A114697 Expansion of (1+x+x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.
1, 3, 9, 22, 55, 133, 323, 780, 1885, 4551, 10989, 26530, 64051, 154633, 373319, 901272, 2175865, 5253003, 12681873, 30616750, 73915375, 178447501, 430810379, 1040068260, 2510946901, 6061962063, 14634871029, 35331704122, 85298279275, 205928262673
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
Crossrefs
Programs
-
Mathematica
Table[(3*LucasL[n, 2] +10*Fibonacci[n, 2] -3 +(-1)^n)/4, {n,0,30}] (* G. C. Greubel, May 24 2021 *)
-
PARI
Vec((1+x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 24 2015
-
Sage
[(4*lucas_number1(n+2,2,-1) -2*lucas_number1(n+1,2,-1) -3 +(-1)^n)/4 for n in (0..30)] # G. C. Greubel, May 24 2021
Formula
a(n+2) - 2*a(n+1) + a(n) = A111955(n+2).
G.f.: (1+x+x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
From Raphie Frank, Oct 01 2012: (Start)
a(2*n) = A216134(2*n+1).
a(2*n+1) = A006452(2*n+3)-1.
Lim_{n->infinity} a(n+1)/a(n) = A014176. (End)
From Colin Barker, May 26 2016: (Start)
a(n) = ( 2*(-3 +(-1)^n) + (6-5*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(6+5*sqrt(2)) )/8.
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3. (End)
Comments