cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114701 Number of sets {p, p'}, where p is a partition of n and p' is conjugate partition of p such that p and p' have no common parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 4, 5, 5, 7, 9, 9, 13, 15, 18, 22, 30, 32, 41, 48, 57, 65, 82, 88, 111, 124, 148, 169, 203, 225, 275, 310, 363, 408, 484, 537, 635, 709, 824, 918, 1075, 1191, 1379, 1540, 1767, 1971, 2269, 2517, 2889, 3208, 3656, 4068, 4629, 5120, 5813, 6452, 7280, 8068, 9113
Offset: 0

Views

Author

Vladeta Jovovic, Feb 18 2006

Keywords

Examples

			a(6)=2 because the pairs of conjugate partitions of 6 are {[6], [1, 1, 1, 1, 1, 1]}, {[3, 3], [2, 2, 2]}, {[5, 1], [2, 1, 1, 1, 1]}, {[4, 2], [2, 2, 1, 1]}, {[3, 2, 1], [3, 2, 1]}, {[3, 1, 1, 1], [4, 1, 1]} and only in the first two pairs there are no common parts.
		

Crossrefs

Cf. A000041.

Programs

  • Maple
    with(combinat): a:=proc(n) local P,ct,j: P:=partition(n): ct:=0: for j from 1 to numbpart(n) do if convert(P[j],set) intersect convert(conjpart(P[j]),set) = {} then ct:=ct+1 else fi: od: ceil(ct/2): end: seq(a(n),n=0..55); # for 55 terms execution takes hours - Emeric Deutsch, Apr 15 2006
  • Mathematica
    ConjugatePartition[e_] := Length /@ Most[NestWhileList[Function[{s}, Select[s - 1, # > 0 &]], e, # =!= {} &]]; (* this ConjugatePartition code is due to Arnoud B. in MathWorld (see link) *)
    a[n_] := a[n] = Module[{P, ct, j}, P = IntegerPartitions[n]; ct = 0; For[j = 1, j <= PartitionsP[n], j++, If[P[[j]] ~Intersection~ ConjugatePartition[ P[[j]]] == {}, ct = ct + 1]]; Ceiling[ct/2]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Jul 18 2024 *)

Extensions

More terms from Emeric Deutsch, Apr 15 2006
a(0)=1 prepended and a(56)-a(60) added by Alois P. Heinz, Sep 28 2023