A114716 Number of linear extensions of a 3 X 2 X n lattice.
1, 5, 2452, 4877756, 20071150430, 129586764260850, 1138355914222027660, 12513844842339741519760, 163186564770917385358723138, 2434438822161210367337209525489, 40488679486377745566571570522228550, 736610570835499716578578298705683198672
Offset: 0
References
- Stanley, R., Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..45
Crossrefs
Cf. A114717.
Programs
-
Maple
b:= proc(u, v, w, x, y, z) option remember; `if`({u, v, w, x, y, z}={0}, 1, `if`(u>v and u>x, b(u-1, v, w, x, y, z), 0)+ `if`(v>w and v>y, b(u, v-1, w, x, y, z), 0)+ `if`(w>z, b(u, v, w-1, x, y, z), 0)+ `if`(x>y, b(u, v, w, x-1, y, z), 0)+ `if`(y>z, b(u, v, w, x, y-1, z), 0)+ `if`(z>0, b(u, v, w, x, y, z-1), 0)) end: a:= n-> b(n$6): seq(a(n), n=0..12); # Alois P. Heinz, Apr 26 2012
-
Mathematica
b[u_, v_, w_, x_, y_, z_] := b[u, v, w, x, y, z] = If[Union[{u, v, w, x, y, z}] == {0}, 1, If[u>v && u>x, b[u-1, v, w, x, y, z], 0] + If[v>w && v>y, b[u, v-1, w, x, y, z], 0] + If[w>z, b[u, v, w-1, x, y, z], 0] + If[x>y, b[u, v, w, x-1, y, z], 0] + If[y>z, b[u, v, w, x, y-1, z], 0] + If[z>0, b[u, v, w, x, y, z-1], 0]]; a[n_] := b[n, n, n, n, n, n]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, May 29 2015, after Alois P. Heinz *)
Extensions
a(6)-a(11) from Alois P. Heinz, Apr 26 2012