A114799 Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.
1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0
Examples
a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Multifactorial.
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
GAP
a:= function(n) if n<1 then return 1; else return n*a(n-7); fi; end; List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
-
Magma
b:= func< n | (n lt 8) select n else n*Self(n-7) >; [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
-
Maple
A114799 := proc(n) option remember; if n < 1 then 1; else n*procname(n-7) ; end if; end proc: seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014 A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
-
Mathematica
a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
-
PARI
A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
-
Sage
def a(n): if (n<1): return 1 else: return n*a(n-7) [a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
Formula
a(n) = 1 for n <= 1, else a(n) = n*a(n-7).
Sum_{n>=0} 1/a(n) = A288094. - Amiram Eldar, Nov 10 2020
Extensions
Edited by M. F. Hasler, Feb 23 2018
Comments