cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A204661 Numbers n such that n!8+1 is prime (for n!8 see A114800).

Original entry on oeis.org

0, 1, 2, 4, 6, 28, 30, 46, 60, 72, 86, 90, 112, 154, 162, 206, 280, 354, 400, 512, 606, 614, 678, 790, 938, 1054, 1092, 1148, 1582, 1788, 2088, 2206, 2598, 2912, 3672, 4642, 6272, 6428, 7084, 7604, 8580, 9464, 12762, 18386, 24910, 30448, 31696, 40288, 41682, 45730
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
No other terms < 50000. - Robert Price, Jul 29 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 8] + 1] & ] (* Robert Price, Apr 19 2019 *)
    Select[Range[0,46000],PrimeQ[Times@@Range[#,1,-8]+1]&] (* Harvey P. Dale, Apr 12 2022 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)+1)& print1(n","))

Extensions

a(35)-a(50) from Robert Price, Jul 29 2012

A288715 Primes of the form k!8+1, where k!8 is the octuple factorial number (A114800).

Original entry on oeis.org

2, 3, 5, 7, 26881, 55441, 96909121, 132843110401, 48704929136641, 152349556104345601, 1397121162877440001, 383414179456168545484801, 81419177249980419349301811609600001, 13189906714496827934586893480755200001
Offset: 1

Views

Author

Robert Price, Jun 13 2017

Keywords

Crossrefs

Cf. A204661.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 8] + 1, {i, 0, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-8]+1,{n,200}],PrimeQ] (* Harvey P. Dale, Dec 26 2022 *)

A288716 Primes of the form k!8+2, where k!8 is the octuple factorial number (A114800).

Original entry on oeis.org

3, 5, 7, 11, 67, 107, 1367, 2417, 16931, 126227, 592517, 65909027, 3493178327, 7547514977, 14454403427, 385235284982627, 2667042724170827, 98523573068265783062627, 121598818552526868243555286516922298627484453127
Offset: 1

Views

Author

Robert Price, Jun 13 2017

Keywords

Crossrefs

Cf. A204663.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 8] + 2, {i, 0, 100}], PrimeQ[#]&]

A289756 Primes of the form k!8-1, where k!8 is the octuple factorial number (A114800).

Original entry on oeis.org

2, 3, 5, 7, 19, 47, 83, 127, 359, 1847, 26879, 55439, 13366079, 188743679, 38761631999, 9033331507199, 3896394330931199, 152349556104345599, 5305528527460761599, 57299708096576225279999, 160680029832131217407999, 383414179456168545484799
Offset: 1

Views

Author

Robert Price, Jul 11 2017

Keywords

Crossrefs

Cf. A204662.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 8] - 1, {i, 2, 100}], PrimeQ[#]&]

A289759 Primes of the form k!8-2, where k!8 is the octuple factorial number (A114800).

Original entry on oeis.org

2, 3, 5, 7, 31, 103, 151, 3823, 16927, 126223, 137227543, 76663738303, 475493443423, 1132114642884223, 232032717002861773, 494437513909964623, 8949366251999798623, 22043108115271868623, 30822262564469609858623, 29990243754746489604765373
Offset: 1

Views

Author

Robert Price, Jul 11 2017

Keywords

Crossrefs

Cf. A204664.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 8] - 2, {i, 3, 100}], PrimeQ[#]&]

A288095 Decimal expansion of m(8) = Sum_{n>=0} 1/n!8, the 8th reciprocal multifactorial constant.

Original entry on oeis.org

3, 9, 8, 9, 2, 4, 1, 2, 1, 2, 6, 9, 0, 1, 3, 6, 5, 4, 4, 1, 3, 3, 6, 4, 2, 1, 3, 4, 8, 0, 1, 9, 0, 9, 9, 4, 3, 8, 3, 5, 9, 2, 7, 3, 9, 2, 4, 5, 7, 6, 8, 1, 4, 8, 2, 6, 2, 0, 9, 5, 5, 6, 6, 5, 3, 0, 4, 1, 6, 4, 8, 8, 7, 6, 0, 5, 1, 5, 5, 1, 0, 8, 3, 8, 6, 2, 6, 1, 2, 0, 8, 0, 8, 0, 0, 6, 8, 4, 2, 3, 0, 7, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.9892412126901365441336421348019099438359273924576814826209556653...
		

Crossrefs

Cf. A114800 (n!8), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), this sequence (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(107)); (1/8)*Exp(1/8)*(8 + (&+[8^(k/8)*Gamma(k/8, 1/8): k in [1..7]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[8], 10, 103][[1]]
  • PARI
    default(realprecision, 105); (1/8)*exp(1/8)*(8 + sum(k=1,7, 8^(k/8)*(gamma(k/8) - incgam(k/8, 1/8)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/8)*exp(1/8)*(8 + sum(8^(k/8)*(gamma(k/8) - gamma_inc(k/8, 1/8)) for k in (1..7))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A204662 Numbers n such that n!8-1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 10, 12, 14, 16, 18, 22, 28, 30, 42, 48, 58, 68, 80, 86, 92, 108, 110, 112, 130, 198, 220, 230, 322, 432, 460, 478, 686, 706, 714, 842, 950, 1010, 1090, 1314, 1904, 2264, 2804, 3164, 3324, 4740, 4824, 4918, 5086, 5442, 6994, 7898, 8236, 8684, 10088, 13990, 15320, 17570, 18218, 21564, 22198, 22684, 24314, 24780, 25790, 38726
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
No other terms < 50000. - Robert Price, Aug 15 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 8] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)-1)& print1(n","))

Extensions

a(39)-a(64) from Robert Price, Aug 15 2012

A204663 Numbers n such that n!8 + 2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 15, 21, 23, 27, 33, 35, 45, 53, 55, 57, 75, 79, 109, 197, 221, 227, 267, 333, 413, 545, 695, 703, 801, 967, 1029, 1329, 1351, 1475, 1549, 1757, 2173, 2861, 3161, 3167, 3885, 4681, 4965, 6277, 6655, 8477, 9821, 9959, 10269, 17999, 23349, 29347, 29477, 30181, 34133, 36687, 40985, 43395, 47499
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
See also links in A156165.
For odd k, n!k +-2 is even for all n > k and thus cannot be prime.
a(60) > 50000. - Robert Price, Aug 19 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[0,9999], PrimeQ[Product[# - 8i,{i, 0, Floor[(# - 2)/8]}] + 2] &] (* Indranil Ghosh, Mar 13 2017 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)+2)& print1(n","))

Extensions

a(39)-a(59) from Robert Price, Aug 19 2012

A204664 Numbers n such that n!8-2 is prime.

Original entry on oeis.org

4, 5, 7, 9, 11, 15, 17, 25, 27, 33, 47, 59, 63, 77, 87, 89, 93, 95, 107, 119, 127, 133, 139, 193, 201, 217, 269, 291, 369, 373, 435, 445, 669, 803, 831, 859, 907, 1271, 1705, 1743, 1849, 3087, 3189, 3497, 4221, 4475, 5119, 6013, 8023, 9237, 12755, 16501, 16747, 17021, 17309, 20671, 21539, 28377, 33625, 35645, 36831, 54663, 56223, 65299, 66159, 68121, 69339, 70579, 73511, 77745, 94601
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
See also links in A156165.
For odd k, n!k +- 2 is even for all n > k and thus cannot be prime.
a(62) > 50000. - Robert Price, Aug 27 2012
The first 10 associated primes: 2, 3, 5, 7, 31, 103, 151, 3823, 16927, 126223. - Robert Price, Mar 10 2017
a(72) > 10^5. - Robert Price, Apr 24 2017

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[4, 50000], PrimeQ[MultiFactorial[#, 8] - 2] &] (* Robert Price, Mar 10 2017 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)-2)& print1(n","))

Extensions

a(46)-a(61) from Robert Price, Aug 27 2012
a(62)-a(71) from Robert Price, Apr 24 2017

A288327 Decuple factorial, 10-factorial, n!10, n!!!!!!!!!!.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24, 39, 56, 75, 96, 119, 144, 171, 200, 231, 528, 897, 1344, 1875, 2496, 3213, 4032, 4959, 6000, 7161, 16896, 29601, 45696, 65625, 89856, 118881, 153216, 193401, 240000, 293601, 709632, 1272843, 2010624, 2953125, 4133376
Offset: 0

Views

Author

Robert Price, Jun 07 2017

Keywords

Examples

			a(13) = 13 * 3 * 1 = 39.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-10);
        fi;
      end;
    List([0..50], n-> a(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    b:=func< n | n le 10 select n else n*Self(n-10) >;
    [1] cat [b(n): n in [1..50]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> `if`(n<1, 1, n*a(n-10)); seq(a(n), n=0..50); # G. C. Greubel, Aug 22 2019
  • Mathematica
    MultiFactorial[n_, k_]:=If[n<1, 1 ,n*MultiFactorial[n-k, k]];
    Table[MultiFactorial[i, 10], {i, 0, 100}]
    Table[Times@@Range[n,1,-10],{n,0,50}] (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-10));
    vector(40, n, n--; a(n) ) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-10)
    [a(n) for n in (0..50)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n)=1 for n < 1, otherwise a(n) = n*a(n-10).
Sum_{n>=0} 1/a(n) = A342033. - Amiram Eldar, May 23 2022
Showing 1-10 of 14 results. Next