cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114805 Cumulative sum of quintuple factorial numbers n!!!!! (A085157).

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 22, 36, 60, 96, 146, 212, 380, 692, 1196, 1946, 3002, 5858, 11474, 21050, 36050, 58226, 121058, 250226, 480050, 855050, 1431626, 3128090, 6744794, 13409690, 24659690, 42533546, 96820394, 216171626, 442778090, 836528090
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Comments

a(1) = 2 is prime; a(3) = 7 is prime; a(4) = 11 is prime; and there are no more primes in the sequence. Semiprime values are: a(2) = 4 = 2^2, a(6) = 22, a(10) = 146 = 2 * 73, a(18) = 11474 = 2 * 5737, a(23) = 250226 = 2 * 125113.

Examples

			a(10) = 0!5 + 1!5 + 2!5 + 3!5 + 4!5 + 5!5 + 6!5 + 7!5 + 8!5 + 9!5 + 10!5 =
1 + 1 + 2 + 3 + 4 + 5 + 6 + 14 + 24 + 36 + 50 = 146 = 2 * 73.
		

Crossrefs

Programs

  • GAP
    b:= function(n)
        if n<1 then return 1;
        else return n*b(n-5);
        fi;
      end;
    List([0..40], n-> Sum([0..n], j-> b(j)) ); # G. C. Greubel, Aug 21 2019
  • Magma
    b:= func< n | n eq 0 select 1 else (n lt 6) select n else n*Self(n-5) >;
    [(&+[b(j): j in [0..n]]): n in [0..40]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    b:= n-> `if`(n < 1, 1, n*b(n-5)); a:= n-> sum(b(j), j = 0..n); seq(a(n), n = 0..40); # G. C. Greubel, Aug 21 2019
  • Mathematica
    f5[0]=1; f5[n_]:= f5[n]= If[n<=6, n, n f5[n-5]]; Accumulate[f5/@Range[0, 35]] (* Giovanni Resta, Jun 15 2016 *)
  • PARI
    b(n)=if(n<1, 1, n*b(n-5));
    vector(40, n, n--; sum(j=0,n, b(j)) ) \\ G. C. Greubel, Aug 21 2019
    
  • Sage
    @CachedFunction
    def b(n):
        if (n<1): return 1
        else: return n*b(n-5)
    [sum(b(j) for j in (0..n)) for n in (0..40)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{j=0..n} j!5.
a(n) = Sum_{j=0..n} j!!!!!.
a(n) = Sum_{j=0..n} A085157(j).