cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A140052 Indices m such that A114850(m)+A114850(k) is prime for some k

Original entry on oeis.org

6, 9, 9, 19, 20, 25, 33, 38, 40, 59, 69, 76, 99, 111, 126, 141, 147, 167, 188, 202, 211, 211, 220, 238, 263, 264, 279, 284, 297, 329, 336, 354, 407, 407, 407, 410, 426, 540, 568, 652, 683, 696, 769, 780, 948, 951
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2008

Keywords

Comments

The associated primes b(n), which grow too quickly for many to be given as a sequence themselves, are {primes of the form A114850(a) + A114850(b)} = {primes of the form A114850(a) + A114850(b)} and begin as follows. b(1) = 437893890380859631 = 256 + 437893890380859375 = 4^4 + 15^15 = semiprime(1)^semiprime(1) + semiprime(6)^semiprime(6).
b(2) = 88817841970012523233890533447265881 = 256 + 88817841970012523233890533447265625 = 4^4 + 25^25 = semiprime(1)^semiprime(1) + semiprime(9)^semiprime(9).
b(3) = 46656 + 88817841970012523233890533447265625 = 6^6 + 24^25 = semiprime(2)^semiprime(2) + semiprime(9)^semiprime(9). This is to A068145 "Primes of the form a^a + b^b" as A001358 semiprimes is to A000040 primes; and as A114850 "(n-th semiprime)^(n-th semiprime)" is to A051674 "(n-th prime)^(n-th prime)."
M. F. Hasler gave the present definition which allows us to list merely the indices, which in the 3 examples above, are [6, 1],[9, 1],[9, 2]. The first 13 [m,k] value pairs are (as found by M. F. Hasler as an extension) are [6, 1], [9, 1], [9, 2], [19, 5], [20, 8], [25, 7], [33, 11], [38, 6], [40, 33], [59, 14], [69, 62], [76, 57], [99, 22]. Hence our sequence begins a(1) = 6, a(2) = 9, a(3) = 9. For the sequence of corresponding k values {1, 1, 2, 5, 8, ...}, see A140053.

Examples

			a(1) = 6 because semiprime(6)^semiprime(6) + semiprime(1)^semiprime(1) = 15^15 + 4^4 = 437893890380859375 + 256 = 437893890380859631 is prime.
		

Crossrefs

Programs

Formula

A001358(a(n))^A001358(a(n)) + A001358(A140053(n))^A001358(A140053(n)) is prime.

Extensions

a(14)-a(46) from Donovan Johnson, Nov 11 2008

A140053 Indices k such that A114850(m)+A114850(k) is prime for some m>k.

Original entry on oeis.org

1, 1, 2, 5, 8, 7, 11, 6, 33, 14, 62, 57, 22, 7, 86, 61, 28, 70, 66, 134, 77, 131, 107, 58, 161, 252, 240, 52, 155, 32, 152, 322, 167, 200, 284, 258, 28, 173, 95, 563, 369, 57, 58, 126, 113, 369
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2008

Keywords

Comments

The associated primes b(n), which grow too quickly for many to be given as a sequence themselves, are {primes of the form A114850(a) + A114850(b)} = {primes of the form A114850(a) + A114850(b)} and begin as follows. b(1) = 437893890380859631 = 256 + 437893890380859375 = 4^4 + 15^15 = semiprime(1)^semiprime(1) + semiprime(6)^semiprime(6).
b(2) = 88817841970012523233890533447265881 = 256 + 88817841970012523233890533447265625 = 4^4 + 25^25 = semiprime(1)^semiprime(1) + semiprime(9)^semiprime(9).
b(3) = 46656 + 88817841970012523233890533447265625 = 6^6 + 24^25 = semiprime(2)^semiprime(2) + semiprime(9)^semiprime(9). This is to A068145 "Primes of the form a^a + b^b" as A001358 semiprimes is to A000040 primes; and as A114850 "(n-th semiprime)^(n-th semiprime)" is to A051674 "(n-th prime)^(n-th prime)."
M. F. Hasler gave the present definition which allows us to list merely the indices, which in the 3 examples above, are [6, 1],[9, 1],[9, 2]. The first 13 [m,k] value pairs are (as found by M. F. Hasler as an extension) are [6, 1], [9, 1], [9, 2], [19, 5], [20, 8], [25, 7], [33, 11], [38, 6], [40, 33], [59, 14], [69, 62], [76, 57], [99, 22]. Hence our sequence begins a(1) = 6, a(2) = 9, a(3) = 9. For the sequence of corresponding k values {6, 9, 9, 19, 20, ...}, see A140052.

Examples

			a(1) = 1 because semiprime(6)^semiprime(6) + semiprime(1)^semiprime(1) = 15^15 + 4^4 = 437893890380859375 + 256 = 437893890380859631 is prime.
		

Crossrefs

Programs

Formula

A001358(a(n))^A001358(a(n)) + A001358(A140052(n))^A001358(A140052(n)) is prime.

Extensions

a(14)-a(46) from Donovan Johnson, Nov 11 2008

A137701 a(n) = semiprime(n)^prime(n).

Original entry on oeis.org

16, 216, 59049, 10000000, 4049565169664, 1946195068359375, 30041942495081691894741, 32064977213018365645815808, 142108547152020037174224853515625, 108199957741720996894562347292921981566976, 118558347188026655500106547231096910504441858017
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2008

Keywords

Examples

			a(1) = Semiprime(1)^prime(1) = 4^2 = 16.
a(2) = Semiprime(2)^prime(2) = 6^3 = 216.
a(3) = Semiprime(3)^prime(3) = 9^5 = 59049.
a(4) = Semiprime(4)^prime(4) = 10^7 = 10000000.
		

Crossrefs

Formula

a(n) = A001358(n)^A000040(n).

A114967 (n-th 3-almost prime)^(n-th 3-almost prime).

Original entry on oeis.org

16777216, 8916100448256, 39346408075296537575424, 104857600000000000000000000, 443426488243037769948249630619149892803, 33145523113253374862572728253364605812736
Offset: 1

Views

Author

Jonathan Vos Post, Feb 21 2006

Keywords

Comments

3-almost prime analog of A051674. A114850 is semiprime analog of A051674.

Examples

			a(1) = A014612(1)^A014612(1) = 8^8 = 16777216 = 2^24.
a(2) = A014612(2)^A014612(2) = 12^12 = 8916100448256 = 2^24 * 3^12.
a(3) = A014612(3)^A014612(3) = 18^18 = 39346408075296537575424 = 2^18 * 3^36.
		

Crossrefs

Programs

  • Mathematica
    #^#&/@Select[Range[40],PrimeOmega[#]==3&] (* Harvey P. Dale, Apr 25 2015 *)

Formula

a(n) = A014612(n)^A014612(n).

A118055 Numerator of Sum_{i=1..n} 1/(s(i)^s(i)) where s(i) = i-th semiprime.

Original entry on oeis.org

1, 733, 389546509, 15216660895232989, 165124648173861912289213141201, 516014525543318775927975356319557, 11473924061057077116469420939475877122177
Offset: 1

Views

Author

Jonathan Vos Post, Apr 11 2006

Keywords

Comments

Semiprime analog of A117579. Fractions are 1/256, 733/186624, 389546509/99179645184, 15216660895232989/3874204890000000000, 165124648173861912289213141201/42041202325478752505760000000000, 516014525543318775927975356319557/131378757267121101580500000000000000, 11473924061057077116469420939475877122177 / 2921293509192991260690562210500000000000000, 239106294995420151295311285049507497083520504633431021289373163777 / 6087713879404511830817263262876196035025072.

Examples

			a(2) = 733 because (1/semiprime(1)^semiprime(1)) + (1/semiprime(2)^semiprime(2))
= (1/256) + (1/46656) = 733/186624.
		

Crossrefs

Denominators = A118055. Cf. A001358, A051674, A114850, A117579.

Programs

  • Mathematica
    Numerator[Accumulate[1/#^#&/@Select[Range[25],PrimeOmega[#]==2&]]] (* Harvey P. Dale, Aug 09 2012 *)

Formula

a(n) = Numerator of Sum_{i=1..n} 1/(semiprime(i)^semiprime(i)).
a(n) = Numerator of Sum_{i=1..n} 1/(A001358(i)^A001358(i)).
a(n) = Numerator of Sum_{i=1..n} 1/A114850(n).

A118056 Denominator of Sum_{i=1..n} 1/(s(i)^s(i)) where s(i) = i-th semiprime.

Original entry on oeis.org

256, 186624, 99179645184, 3874204890000000000, 42041202325478752505760000000000, 131378757267121101580500000000000000, 2921293509192991260690562210500000000000000, 60877138794045118308172632628761960350250724033554048000000000000000
Offset: 1

Views

Author

Jonathan Vos Post, Apr 11 2006

Keywords

Comments

Semiprime analog of A076265. Fractions are 1/256, 733/186624, 389546509/99179645184, 15216660895232989/3874204890000000000, 165124648173861912289213141201/42041202325478752505760000000000, 516014525543318775927975356319557/131378757267121101580500000000000000, 11473924061057077116469420939475877122177 / 2921293509192991260690562210500000000000000, 239106294995420151295311285049507497083520504633431021289373163777 / 60877138794045118308172632628761960350250724033554048000000000000000.

Examples

			a(2) = 186624 because (1/semiprime(1)^semiprime(1)) + (1/semiprime(2)^semiprime(2))= (1/256) + (1/46656) = 733/186624.
		

Crossrefs

Numerators = A118055. Cf. A001358, A051674, A114850, A117579.

Programs

  • Mathematica
    Denominator[Accumulate[1/#^#&/@Select[Range[30],PrimeOmega[#]==2&]]] (* Harvey P. Dale, Feb 15 2012 *)

Formula

a(n) = Denominator of Sum_{i=1..n} 1/(semiprime(i)^semiprime(i)).
a(n) = Denominator of Sum_{i=1..n} 1/(A001358(i)^A001358(i)).
a(n) = Denominator of Sum_{i=1..n} 1/A114850(n).

Extensions

Corrected by Harvey P. Dale, Feb 15 2012

A114993 (n-th 4-almost prime)^(n-th 4-almost prime).

Original entry on oeis.org

18446744073709551616, 1333735776850284124449081472843776, 106387358923716524807713475752456393740167855629859291136, 12089258196146291747061760000000000000000000000000000000000000000
Offset: 1

Views

Author

Jonathan Vos Post, Feb 22 2006

Keywords

Comments

4-almost prime analog of A051674. A114850 is semiprime analog of A051674. a(5) = 56^56 has 94 digits.

Examples

			a(1) = A014613(1)^A014613(1) = 16^16 = 18446744073709551616 = 2^64.
a(2) = A014613(2)^A014613(2) = 24^24 = 1333735776850284124449081472843776 = 2^72 * 3^24.
a(3) = A014613(3)^A014613(3) = 36^36 = 2^72 * 3^72.
		

Crossrefs

Formula

a(n) = A014613(n)^A014613(n).

A118062 Numerator of Sum_{i=1..n} 1/(t(i)^t(i)) where t(i) = i-th 3-almost prime.

Original entry on oeis.org

1, 265721, 75047458863267833, 938093235790847912650094635296999121, 2771420766426289313598405374054613260285749630619149892803, 83546357082134777747819786589906868700938637689935705237433756853637190925073724793683
Offset: 1

Views

Author

Jonathan Vos Post, Apr 11 2006

Keywords

Comments

3-almost prime analog of A117579. Semiprime analog of A117579 is A118056. Fractions are 1/16777216, 265721/4458050224128, 75047458863267833/1259085058409489202413568, 938093235790847912650094635296999121 / 15738563230118615030169600000000000000000000, 2771420766426289313598405374054613260285749630619149892803 / 46496637333593157266125580467610571799579852800000000000000000000.

Examples

			a(2) = 265721 because (1/A014612(1)^A014612(1)) + (1/A014612(2)^A014612(2))= (1/(8^8)) + (1/(12^12)) = (1/16777216) + (1/8916100448256) = 265721/4458050224128.
		

Crossrefs

Formula

a(n) = Numerator of Sum_{i=1..n} 1/(3almostprime(i)^3almostprime(i)).
a(n) = Numerator of Sum_{i=1..n} 1/(A014612(i)^A014612(i)).
a(n) = Numerator of Sum_{i=1..n} 1/A114967(n).

A118063 Denominator of Sum_{i=1..n} 1/(t(i)^t(i)) where t(i) = i-th 3-almost prime.

Original entry on oeis.org

16777216, 4458050224128, 1259085058409489202413568, 15738563230118615030169600000000000000000000, 46496637333593157266125580467610571799579852800000000000000000000
Offset: 1

Views

Author

Jonathan Vos Post, Apr 11 2006

Keywords

Comments

3-almost prime analog of A076265. (Semiprime analog of A076265 is A118056.) Fractions are 1/16777216, 265721/4458050224128, 75047458863267833/1259085058409489202413568, 938093235790847912650094635296999121 / 15738563230118615030169600000000000000000000, 2771420766426289313598405374054613260285749630619149892803 / 46496637333593157266125580467610571799579852800000000000000000000.

Examples

			a(2) = 4458050224128 because (1/A014612(1)^A014612(1)) + (1/A014612(2)^A014612(2))= (1/(8^8)) + (1/(12^12)) = (1/16777216) + (1/8916100448256) = 265721/4458050224128.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[1/#^#&/@Select[Range[30],PrimeOmega[#]==3&]]//Denominator (* Harvey P. Dale, Apr 05 2020 *)

Formula

a(n) = Denominator of Sum_{i=1..n} 1/(3almostprime(i)^3almostprime(i)).
a(n) = Denominator of Sum_{i=1..n} 1/(A014612(i)^A014612(i)).
a(n) = Denominator of Sum_{i=1..n} 1/A114967(n).
Showing 1-9 of 9 results.