cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A305236 Numbers n such that the multiplicative group of integers modulo n is isomorphic to C_m X C_m, m > 1.

Original entry on oeis.org

8, 12, 63, 126, 513, 1026, 2107, 4214, 12625, 25250, 26533, 39609, 53066, 79218, 355023, 710046, 3190833, 4457713, 6381666, 8915426, 19854847, 38463283, 39709694, 76926566, 242138449, 370634743, 484276898, 516465451, 574336561, 701607583, 741269486, 1032930902, 1148673122, 1380336193, 1403215166, 2324581983, 2760672386, 4649163966, 4882890625, 6174434113, 9765781250
Offset: 1

Views

Author

Jianing Song, Jun 19 2018

Keywords

Comments

Note that 24 is only number k such that the multiplicative group of integers modulo k is isomorphic to C_m X C_m X C_m, m > 1.
The number of elements in the multiplicative group of integers modulo a(n) of order d is A007434(d), whenever d is divisible by A002322(a(n)).
The corresponding m (=A002322(a(n))) are 2, 2, 6, 6, 18, 18, 42, 42, 100, 100, 156, 162, 156, 162, 486, 486, 1458, 2028, 1458, 2028, ... Each term in A114874, except for those of the form 2^k, k >= 2, occurs exactly twice in this list.
Numbers k such that A046072(k) = 2 and A316089(k) = 1. - Jianing Song, Sep 15 2018
Except for 8 and 12, these are numbers of the form p^e*((p-1)*p^(e-1) + 1) or 2*p^e*((p-1)*p^(e-1) + 1) where p is an odd prime and (p-1)*p^(e-1) + 1 is prime. - Jianing Song, Apr 13 2019

Examples

			The multiplicative group of integers modulo 63 is isomorphic to C_6 X C_6. There are A007434(1) = 1 element of order 1, A007434(2) = 3 elements of order 2, A007434(3) = 8 elements of order 3, A007434(6) = 24 elements of order 6 modulo 63.
The multiplicative group of integers modulo 513 is isomorphic to C_18 X C_18. There are A007434(1) = 1 element of order 1, A007434(2) = 3 elements of order 2, A007434(3) = 8 elements of order 3, A007434(6) = 24 elements of order 6, A007434(9) = 72 elements of order 9, A007434(18) = 216 elements of order 18 modulo 513.
		

Crossrefs

Cf. A114874.
Odd terms are given by A307527.

Programs

  • PARI
    for(n=1,10^7,if(#znstar(n)[2]==2 && znstar(n)[2][1]==znstar(n)[2][2], print1(n, ", "))) \\ Jianing Song, Sep 15 2018
    
  • PARI
    the_first_entries(nn) = my(u=[]); for(n=2, sqrt(nn), my(v=factor(n), d=#v[, 1], p=v[d, 1], e=v[d, 2]); if(isprime(n+1) && p!=2 && n==(p-1)*p^e, u=concat(u, [(n+1)*p^(e+1)]))); t=concat([8, 12], concat(u, 2*u)); t=vecsort(select(i->(iJianing Song, Apr 13 2019

Formula

A302257(a(n)) = A258615(a(n))/2.

Extensions

Missing a(40) inserted by Jianing Song, Apr 20 2019

A114873 Numbers representable in exactly one way as (p-1)p^k (where p is a prime and k>=0), in ascending order.

Original entry on oeis.org

1, 8, 10, 12, 20, 22, 28, 30, 32, 36, 40, 46, 52, 54, 58, 60, 64, 66, 70, 72, 78, 82, 88, 96, 102, 106, 108, 110, 112, 126, 128, 130, 136, 138, 148, 150, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 262, 268, 270, 272, 276, 280
Offset: 1

Views

Author

Franz Vrabec, Jan 03 2006

Keywords

Examples

			(2-1)*2^3 is the only representation of 8 in the required form.
		

Crossrefs

Programs

  • Mathematica
    s = Split@ Sort@ Flatten@ Table[(Prime[n] - 1)Prime[n]^k, {n, 60}, {k, 0, 6}]; Take[Union@ Flatten@ Select[s, Length@# == 1 &], 80] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jan 05 2006

A134269 Number of solutions to the equation p^k - p^(k-1) = n, where k is a positive integer and p is prime.

Original entry on oeis.org

1, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Anthony C Robin, Jan 15 2008

Keywords

Comments

The Euler phi function A000010 (number of integers less than n which are coprime with n) involves calculating the expression p^(k-1)*(p-1), where p is prime. For example phi(120) = phi(2^3*3*5) = (2^3-2^2)*(3-1)*(5-1) = 4*2*4 = 32.

Examples

			Notice that it is not possible to have more than 2 solutions, but say when n=4 there are two solutions, namely 5^1 - 5^0 and 2^3 - 2^2.
a(2) = 2 refers to 2^2 - 2^1 = 2 and 3^1 - 3^0 = 2.
a(6) = 2 as 6 = 3^2 - 3^1 = 7^1 - 7^0.
		

Crossrefs

Programs

  • Maple
    A134269 := proc(n)
        local a,p,r ;
        a := 0 ;
        p :=2 ;
        while p <= n+1 do
            r := n/(p-1) ;
            if type(r,'integer') then
                if r = 1 then
                    a := a+1 ;
                else
                    r := ifactors(r)[2] ;
                    if nops(r) = 1 then
                        if op(1,op(1,r)) = p then
                            a := a+1 ;
                        end if;
                    end if;
                end if;
            end if;
            p := nextprime(p) ;
        end do:
        return a;
    end proc: # R. J. Mathar, Aug 06 2013
  • PARI
    lista(N=100) = {tab = vector(N); for (i=1, N, p = prime(i); for (j=1, N, v = p^j-p^(j-1); if (v <= #tab, tab[v]++););); for (i=1, #tab, print1(tab[i], ", "));} \\ Michel Marcus, Aug 06 2013
    
  • PARI
    A134269list(up_to) = { my(v=vector(up_to)); forprime(p=2,1+up_to, for(j=1,oo,my(d = (p^j)-(p^(j-1))); if(d>up_to,break,v[d]++))); (v); };
    v134269 = A134269list(up_to);
    A134269(n) = v134269[n]; \\ Antti Karttunen, Nov 09 2018

Extensions

a(2) corrected by Michel Marcus, Aug 06 2013
More terms from Antti Karttunen, Nov 09 2018

A307527 Odd terms in A305236.

Original entry on oeis.org

63, 513, 2107, 12625, 26533, 39609, 355023, 3190833, 4457713, 19854847, 38463283, 242138449, 370634743, 516465451, 574336561, 701607583, 1380336193, 2324581983, 4882890625, 6174434113, 12859758577, 14793096853, 20578440583, 43522669657, 85504120021
Offset: 1

Views

Author

Jianing Song, Apr 12 2019

Keywords

Comments

These are numbers of the form p^e*((p-1)*p^(e-1) + 1) where p is an odd prime and (p-1)*p^(e-1) + 1 is prime.
{A002322(a(n))} = {6, 18, 42, 100, 156, 162, ...} is a permutation of A114874 without the terms that are powers of 2 (but they don't have the same order: 6563187324027001 and 6575415997816513 are both terms but A002322(6563187324027001) = 81009000 while A002322(6575415997816513) = 80995248).
A305236 = {a(n)} U {2*a(n)} U {8, 12}.

Examples

			See A305236 for examples.
		

Crossrefs

Programs

  • PARI
    the_first_entries(nn) = my(u=[]); for(n=2, sqrt(nn), my(v=factor(n), d=#v[, 1], p=v[d, 1], e=v[d, 2]); if(isprime(n+1) && p!=2 && n==(p-1)*p^e, u=concat(u, [(n+1)*p^(e+1)]))); u=vecsort(select(i->(i
    				

A309502 Totients congruent to 2 mod 4.

Original entry on oeis.org

2, 6, 10, 18, 22, 30, 42, 46, 54, 58, 66, 70, 78, 82, 102, 106, 110, 126, 130, 138, 150, 162, 166, 178, 190, 198, 210, 222, 226, 238, 250, 262, 270, 282, 294, 306, 310, 330, 342, 346, 358, 366, 378, 382, 418, 430, 438, 442, 462, 466, 478, 486, 490, 498, 502
Offset: 1

Views

Author

Franz Vrabec, Aug 05 2019

Keywords

Comments

Intersection of A002202 and A016825.
Let the multiplicity of a(n) be the number of m such that phi(m)=a(n), a(1)=2 has multiplicity 3 (phi(3)=phi(4)=phi(6)=2) and all other terms have multiplicity 2 or 4.
From Jianing Song, Aug 23 2021: (Start)
Numbers of the form (p-1)*p^e for primes p == 3 (mod 4), e >= 0.
The terms with multiplicity 4 are the numbers in A114874 that are congruent to 2 modulo 4 and greater than 2, that is, the numbers of the form k = (p-1)*p^e for primes p == 3 (mod 4), e >= 1, where k+1 is prime. In this case, the numbers m such that phi(m) = k are m = k+1, 2*(k+1), p^(e+1) and 2*p^(e+1). (End)

Examples

			10 = phi(11) = phi(22) and 10 == 2 (mod 4), so 10 is in the sequence.
		

Crossrefs

Supersequence of A063668.

Programs

  • PARI
    isok(t) = istotient(t) && ((t % 4) == 2); \\ Michel Marcus, Aug 05 2019

Extensions

New name using existing comment from Michel Marcus, May 14 2020
Showing 1-5 of 5 results.