cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114924 Primes p such that pi(p) is obtained by dropping one of the digits of p in decimal expansion.

Original entry on oeis.org

17, 12491, 14723, 42437, 57089, 58193, 61051, 63131, 63347, 64553, 64567, 64577, 64591, 64601, 64661, 64679, 64951, 65071, 65173, 65293, 65881, 66863, 69931, 79817, 99551, 129083, 165103, 263071, 284833, 1407647, 1515259, 4303027
Offset: 1

Views

Author

Farideh Firoozbakht, Jan 14 2006

Keywords

Comments

If n>31 then we can get pi(a(n)) by dropping the first digit of a(n). Next term is greater than prime(20000000).

Examples

			95517973 is in the sequence because 95517973 is prime and pi(95517973)=5517973.
		

Crossrefs

Cf. A114924.

Programs

  • Mathematica
    Do[h=IntegerDigits[Prime@n]; l=Length[h]; If[MemberQ[Table[ FromDigits[Drop[h, {k}]], {k, l}], n], Print[Prime@n]], {n, 20000000}]
    prpiQ[n_]:=MemberQ[FromDigits/@Table[Drop[IntegerDigits[n],{d}],{d,IntegerLength[n]}],PrimePi[n]]; Select[Prime[Range[310000]],prpiQ] (* Harvey P. Dale, Dec 29 2024 *)