A114939 Number of essentially different seating arrangements for n couples around a circular table with 2n seats avoiding spouses being neighbors and avoiding clusters of 3 persons with equal gender.
0, 1, 7, 216, 10956, 803400, 83003040, 11579823360, 2080493573760, 469031859192960, 129727461014726400, 43176116371928601600, 17025803126147196057600, 7850538273249476117913600
Offset: 1
Examples
a(2)=1 because the only valid arrangement is aBAb. a(3)=7 because the only valid arrangements under the given conditions are: abAcBC, aBAcbC, aBcAbC, aBcACb, acAbCB, acBAbC, aCAbcB.
Links
- M. A. Alekseyev, Weighted de Bruijn Graphs for the Menage Problem and Its Generalizations. Lecture Notes in Computer Science 9843 (2016), 151-162. doi:10.1007/978-3-319-44543-4_12; arXiv:1510.07926 [math.CO], 2015-2016.
Programs
-
Mathematica
a[1] = 0; a[n_] := (n-1)!/4 Sum[(-1)^j(n-j)! SeriesCoefficient[ SeriesCoefficient[Tr[ MatrixPower[{{0, 1, 0, y^2, 0, 0}, {z y^2, 0, 1, 0, y^2, 0}, {z y^2, 0, 0, 0, y^2, 0}, {0, 1, 0, 0, 0, z}, {0, 1, 0, y^2, 0, z}, {0, 0, 1, 0, y^2, 0}}, 2n]], {y, 0, 2n}] , {z, 0, j}], {j, 0, n}]; Array[a, 14] (* Jean-François Alcover, Dec 03 2018, from PARI *)
-
PARI
{ a(n) = if(n<=1, 0, (-1)^n*(n-1)!*2^(n-1) + n! * polcoeff( polcoeff( [0, 2*y*z^3 + z^2, -3*y*z^5 - 4*z^4 + ((-2*y^2 - 1)/y)*z^3, 6*y*z^7 + (4*y^2 + 11)*z^6 + ((8*y^2 + 4)/y)*z^5 + 3*z^4] * sum(j=0,n-1, j! * [0, 0, 0, -z^6 + z^4; 1, 0, 0, ((y^2 + 1)/y)*z^5 - 2*z^4 + ((-y^2 - 1)/y)*z^3; 0, 1, 0, ((2*y^2 + 2)/y)*z^3 + z^2; 0, 0, 1, -2*z^2]^(n+j) ) * [1,0,0,0]~, 2*n,z), 0,y) / 2 ); }
Formula
See Alekseyev (2016) and the PARI code for the formula.
a(n) = A258338(n) / (4*n).
Extensions
a(4)-a(7) corrected, formula and further term provided by Max Alekseyev, Feb 15 2008
Comments