cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114966 Prime(n) + Semiprime(n) + 3AlmostPrime(n) + 4AlmostPrime(n) + 5AlmostPrime(n).

Original entry on oeis.org

62, 93, 140, 157, 214, 224, 248, 326, 344, 364, 384, 423, 451, 516, 538, 568, 589, 600, 630, 672, 689, 736, 807, 837, 871, 892, 916, 937, 964, 993, 1030, 1052, 1090, 1100, 1164, 1192, 1250, 1294, 1320, 1359, 1373, 1387, 1435, 1454, 1487, 1526, 1547, 1584
Offset: 1

Views

Author

Jonathan Vos Post, Feb 21 2006

Keywords

Comments

Primes in this sequence include a(4) = 157, a(28) = 937, a(41) = 1373, a(45) = 1487, a(49) = 1609.

Examples

			a(1) = Prime(1) + Semiprime(1) + 3AlmostPrime(1) +
4AlmostPrime(1) + 5AlmostPrime(1) = 2 + 4 + 8 + 16 + 32 = 62.
a(6) = A114944(6) + A014614(6) = 112 + 112 = 224.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=1000,p1,p2,p3,p4,p5,len},p1=Prime[Range[nn]];p2= Select[ Range[ nn], PrimeOmega[ #] ==2&];p3=Select[ Range[nn], PrimeOmega[ #]==3&];p4=Select[ Range[ nn],PrimeOmega[#]==4&];p5=Select[ Range[ nn], PrimeOmega[ #]==5&];len=Min[Length/@{p1,p2,p3,p4,p5}]; Total/@Thread[ {Take[ p1,len], Take[p2,len],Take[p3,len], Take[p4,len],Take[p5,len]}]] (* Harvey P. Dale, Apr 16 2015 *)

Formula

a(n) = A000040(n) + A001358(n) + A014612(n) + A014613(n) + A014614(n). a(n) = A114944(n) + A014614(n).

Extensions

Corrected by Harvey P. Dale, Apr 16 2015

A114879 Numbers n coprime to 3 such that there exists an (n-1)-digit ternary number wherein each substring is indivisible by n.

Original entry on oeis.org

2, 4, 5, 10, 20, 37
Offset: 1

Views

Author

Don Reble, Feb 17 2006

Keywords

Comments

a(7) > 64.

Examples

			20 is there because each substring of 1121212211122121211 (base 3) is indivisible by 20.
		

Crossrefs

Showing 1-2 of 2 results.