A114955 A 2/3-power Fibonacci sequence.
1, 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0
Examples
a(2) = ceiling(a(0)^(2/3) + a(1)^(2/3)) = ceiling(1^(2/3) + 1^(2/3)) = 2. a(3) = ceiling(a(1)^(2/3) + a(2)^(2/3)) = ceiling(1^(2/3) + 2^(2/3)) = ceiling(2.58740105) = 3. a(4) = ceiling(2^(2/3) + 3^(2/3)) = ceiling(3.66748488) = 4. a(5) = ceiling(3^(2/3) + 4^(2/3)) = ceiling(4.59992592) = 5. a(6) = ceiling(4^(2/3) + 5^(2/3)) = ceiling(5.44385984) = 6. a(7) = ceiling(5^(2/3) + 6^(2/3)) = ceiling(6.22594499) = 7. a(8) = ceiling(6^(2/3) + 7^(2/3)) = ceiling(6.96123296) = 7.
Links
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Mathematica
nxt[{a_,b_}]:={b,Ceiling[b^(2/3)+a^(2/3)]}; Transpose[NestList[nxt,{1,1},80]][[1]] (* Harvey P. Dale, Jan 03 2013 *)
-
PARI
{a(n)=if(n<1, n==0, if(n>8, 8, n-(n>7)))} /* Michael Somos, Aug 31 2006 */
Formula
a(0) = a(1) = 1, for n>1 a(n) = ceiling(a(n-1)^(2/3) + a(n-2)^(2/3)).
a(n) = 8 for all n>8.
Euler transform of length 8 sequence [ 1, 1, 1, 0, 0, -1, 0, -1]. - Michael Somos, Aug 31 2006
G.f.: (1-x^6)(1-x^8)/((1-x)(1-x^2)(1-x^3)). - Michael Somos, Aug 31 2006
Comments