cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114964 a(n) = n^2 + 30.

Original entry on oeis.org

30, 31, 34, 39, 46, 55, 66, 79, 94, 111, 130, 151, 174, 199, 226, 255, 286, 319, 354, 391, 430, 471, 514, 559, 606, 655, 706, 759, 814, 871, 930, 991, 1054, 1119, 1186, 1255, 1326, 1399, 1474, 1551, 1630, 1711, 1794, 1879, 1966, 2055, 2146, 2239, 2334, 2431, 2530
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

x^2 + 30 != y^n for all x,y and n > 1, so this is a subsequence of A007916.
From Bruno Berselli, May 12 2014: (Start)
This is the case k=5 of the identity n^2 + k*(k+1) = (Sum_{i=-k..k} (n+i)^3)/((2*k+1)*n).
Similar sequences: A059100 (k=1), A114949 (k=2), A241748 (k=3), A241850 (k=4). (End)
The old name of this sequence was: Numbers of the form x^2 + 30. Also numbers that are not a perfect power.

Examples

			11*4*a(4) = (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 = 2024. - _Bruno Berselli_, May 12 2014
		

Crossrefs

Programs

  • Mathematica
    Range[0,60]^2+30 (* Harvey P. Dale, Oct 17 2022 *)
  • PARI
    g(n,p) = for(x=0,n,y=x^2+p;print1(y","));
    
  • PARI
    a(n) = n^2 + 30; \\ Altug Alkan, Apr 30 2018

Formula

From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(30)*Pi*coth(sqrt(30)*Pi))/60.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(30)*Pi*cosech(sqrt(30)*Pi))/60. (End)
From Elmo R. Oliveira, Dec 30 2024: (Start)
G.f.: (30 - 59*x + 31*x^2)/(1 - x)^3.
E.g.f.: (30 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

New name from Shawn A. Broyles and Altug Alkan, Apr 30 2018