cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A059100 a(n) = n^2 + 2.

Original entry on oeis.org

2, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403, 2502, 2603
Offset: 0

Views

Author

Henry Bottomley, Feb 13 2001

Keywords

Comments

Let s(n) = Sum_{k>=1} 1/n^(2^k). Then I conjecture that the maximum element in the continued fraction for s(n) is n^2 + 2. - Benoit Cloitre, Aug 15 2002
Binomial transformation yields A081908, with A081908(0)=1 dropped. - R. J. Mathar, Oct 05 2008
1/a(n) = R(n)/r with R(n) the n-th radius of the Pappus chain of the symmetric arbelos with semicircle radii r, r1 = r/2 = r2. See the MathWorld link for Pappus chain (there are two of them, a left and a right one. In this case these two chains are congruent). - Wolfdieter Lang, Mar 01 2013
a(n) is the number of election results for an election with n+2 candidates, say C1, C2, ..., and C(n+2), and with only two voters (each casting a single vote) that have C1 and C2 receiving the same number of votes. See link below. - Dennis P. Walsh, May 08 2013
This sequence gives the set of values such that for sequences b(k+1) = a(n)*b(k) - b(k-1), with initial values b(0) = 2, b(1) = a(n), all such sequences are invariant under this transformation: b(k) = (b(j+k) + b(j-k))/b(j), except where b(j) = 0, for all integer values of j and k, including negative values. Examples are: at n=0, b(k) = 2 for all k; at n=1, b(k) = A005248; at n=2, b(k) = 2*A001541; at n=3, b(k)= A057076; at n=4, b(k) = 2*A023039. This b(k) family are also the transformation results for all related b'(k) (i.e., those with different initial values) including non-integer values. Further, these b(k) are also the bisections of the transformations of sequences of the form G(k+1) = n * G(k) + G(k-1), and those bisections are invariant for all initial values of g(0) and g(1), including non-integer values. For n = 1 this g(k) family includes Fibonacci and Lucas, where the invariant bisection is b(k) = A005248. The applicable bisection for this transformation of g(k) is for the odd values of k, and applies for all n. Also see A000032 for a related family of sequences. - Richard R. Forberg, Nov 22 2014
Also the number of maximum matchings in the n-gear graph. - Eric W. Weisstein, Dec 31 2017
Also the Wiener index of the n-dipyramidal graph. - Eric W. Weisstein, Jun 14 2018
Numbers of the form n^2+2 have no factors that are congruent to 7 (mod 8). - Gordon E. Michaels, Sep 12 2019
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {n, 2n}]. - Magus K. Chu, Sep 10 2022

Examples

			For n = 2, a(2) = 6 since there are 6 election results in a 4-candidate, 2-voter election that have candidates c1 and c2 tied. Letting <i,j> denote voter 1 voting for candidate i and voter 2 voting for candidate j, the six election results are <1,2>, <2,1>, <3,3>, <3,4>, <4,3>, and <4,4>. - _Dennis P. Walsh_, May 08 2013
		

Crossrefs

Apart from initial terms, same as A010000.
2nd row/column of A295707.

Programs

Formula

G.f.: (2 - 3*x + 3*x^2)/(1 - x)^3. - R. J. Mathar, Oct 05 2008
a(n) = ((n - 2)^2 + 2*(n + 1)^2)/3. - Reinhard Zumkeller, Feb 13 2009
a(n) = A000196(A156798(n) - A000290(n)). - Reinhard Zumkeller, Feb 16 2009
a(n) = 2*n + a(n-1) - 1 with a(0) = 2. - Vincenzo Librandi, Aug 07 2010
a(n+3) = (A166464(n+5) - A166464(n))/20. - Paul Curtz, Nov 07 2012
From Paul Curtz, Nov 07 2012: (Start)
a(3*n) mod 9 = 2.
a(3*n+1) = 3*A056109(n).
a(3*n+2) = 3*A056105(n+1). (End)
Sum_{n >= 1} 1/a(n) = Pi * coth(sqrt(2)*Pi) / 2^(3/2) - 1/4. - Vaclav Kotesovec, May 01 2018
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(2)*Pi*(csch(sqrt(2)*Pi)))/4.
Product_{n>=0} (1 + 1/a(n)) = sqrt(3/2)*csch(sqrt(2)*Pi)*sinh(sqrt(3)*Pi).
Product_{n>=0} (1 - 1/a(n)) = csch(sqrt(2)*Pi)*sinh(Pi)/sqrt(2). (End)
E.g.f.: exp(x)*(2 + x + x^2). - Stefano Spezia, Aug 07 2024

A114949 a(n) = n^2 + 6.

Original entry on oeis.org

6, 7, 10, 15, 22, 31, 42, 55, 70, 87, 106, 127, 150, 175, 202, 231, 262, 295, 330, 367, 406, 447, 490, 535, 582, 631, 682, 735, 790, 847, 906, 967, 1030, 1095, 1162, 1231, 1302, 1375, 1450, 1527, 1606, 1687, 1770, 1855, 1942, 2031, 2122, 2215, 2310, 2407, 2506
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

2/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the counterclockwise Pappus chain of the arbelos with semicircle radii r, r1 = 2r/3, r2 = r - r1 = r/3. See the MathWorld link for such a Pappus chain. The clockwise chain companion has circle radii R'(n)/r = 2/A222465(n), n >= 0. - Wolfdieter Lang, Mar 01 2013

Examples

			The arbelos chain defined in a comment above has circle radii [1/3, 2/7, 1/5, 2/15, 1/11, 2/31, 1/21, 2/55, 1/35, 2/87, 1/53,...], for n >= 0. - _Wolfdieter Lang_, Mar 01 2013
		

Crossrefs

Programs

Formula

From R. J. Mathar, May 17 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(6 - 11*x + 7*x^2)/(x - 1)^3. (End)
a(n) = 2*n + a(n - 1) - 1, with n > 0, a(0)=6. - Vincenzo Librandi, Nov 13 2010
a(n) = A000290(n) + 6. - Omar E. Pol, Mar 02 2013
a(n) = ((n-2)^3 + (n-1)^3 + n^3 + (n+1)^3 + (n+2)^3)/(5*n) for n>=1. - Bruno Berselli, May 12 2014
For n >= 1, a(n) = (A016742(n) + A082044(n) - 1)/A000290(n). - Bruce J. Nicholson, Apr 19 2017
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(6)*Pi*coth(sqrt(6)*Pi))/12.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(6)*Pi*cosech(sqrt(6)*Pi))/12. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = sqrt(5/6)*sinh(sqrt(5)*Pi)/sinh(sqrt(6)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(7/6)*sinh(sqrt(7)*Pi)/sinh(sqrt(6)*Pi). (End)
E.g.f.: exp(x)*(6 + x + x^2). - Elmo R. Oliveira, Jan 17 2025

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A114948 a(n) = n^2 + 10.

Original entry on oeis.org

10, 11, 14, 19, 26, 35, 46, 59, 74, 91, 110, 131, 154, 179, 206, 235, 266, 299, 334, 371, 410, 451, 494, 539, 586, 635, 686, 739, 794, 851, 910, 971, 1034, 1099, 1166, 1235, 1306, 1379, 1454, 1531, 1610, 1691, 1774, 1859, 1946, 2035, 2126, 2219, 2314, 2411, 2510
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Conjecture: n^2 + 10 != x^k for all n,x, and k > 1.
The conjecture is true: See Cohn. - James Rayman, Feb 14 2023

Crossrefs

Programs

Formula

From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(10)*Pi*coth(sqrt(10)*Pi))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(10)*Pi*cosech(sqrt(10)*Pi))/20. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (3/sqrt(10))*sinh(3*Pi)/sinh(sqrt(10)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(11/10)*sinh(sqrt(11)*Pi)/sinh(sqrt(10)*Pi). (End)
From Elmo R. Oliveira, Jan 25 2025: (Start)
G.f.: (10 - 19*x + 11*x^2)/(1 - x)^3.
E.g.f.: (10 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
a(0) = 10 prepended by Elmo R. Oliveira, Jan 26 2025

A241748 a(n) = n^2 + 12.

Original entry on oeis.org

12, 13, 16, 21, 28, 37, 48, 61, 76, 93, 112, 133, 156, 181, 208, 237, 268, 301, 336, 373, 412, 453, 496, 541, 588, 637, 688, 741, 796, 853, 912, 973, 1036, 1101, 1168, 1237, 1308, 1381, 1456, 1533, 1612, 1693, 1776, 1861, 1948, 2037, 2128, 2221, 2316, 2413, 2512
Offset: 0

Views

Author

Vincenzo Librandi, Apr 30 2014

Keywords

Comments

3/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the counterclockwise Pappus chain of the arbelos with semicircle radii r, r1 = 3*r/4, r2 = r - r1 = r/4. See a comment on A114949 also for the MathWorld Pappus chain link. - Wolfdieter Lang, Jun 29 2015

Crossrefs

Cf. similar sequences listed in A114962.
Cf. A114964 (see comment), A114949.

Programs

  • Magma
    [n^2+12: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 12, {n, 0, 60}]
  • PARI
    a(n)=n^2+12 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (12-23*x+13*x^2)/(1-x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
(2*n)*a(n) = (n+2)^3 + (n-2)^3; also, 2*a(n) = (n+sqrt(12))^2 + (n-sqrt(12))^2. - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(12)*Pi*coth(sqrt(12)*Pi))/24.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(12)*Pi*cosech(sqrt(12)*Pi))/24. (End)
E.g.f.: exp(x)*(12 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A243618 Table read by antidiagonals: T(n,k) is the curvature of a circle in a nested Pappus chain (see Comments for details).

Original entry on oeis.org

2, 6, 3, 12, 7, 6, 20, 13, 10, 11, 30, 21, 16, 15, 18, 42, 31, 24, 21, 22, 27, 56, 43, 34, 29, 28, 31, 38, 72, 57, 46, 39, 36, 37, 42, 51, 90, 73, 60, 51, 46, 45, 48, 55, 66, 110, 91, 76, 65, 58, 55, 56, 61, 70, 83, 132
Offset: 0

Views

Author

Kival Ngaokrajang, Jun 07 2014

Keywords

Comments

Refer to sequential curvatures from Wikipedia. For any integer k > 0, there exists an Apollonian gasket defined by the following curvatures:
(-k, k+1, k*(k+1), k*(k+1)+1).
For example, the gaskets defined by (-1, 2, 2, 3), (-2, 3, 6, 7), (-3, 4, 12, 13), ..., all follow this pattern (all curvatures are integral). Because every interior circle that is defined by k+1 can become the bounding circle (defined by -k) in another gasket, these gaskets can be nested. When one considers only circles that contact both circles -k and k+1, the pattern will be nested Pappus chains. T(n,k) is the curvature when n = 0 is the circle at the center and n > 0 is in the clockwise direction, k >= 1 for each nested iteration. See illustration in links.

Examples

			Table begins:
n/k   1   2   3    4    5    6    7  ...
0     2   6  12   20   30   42   56  ...
1     3   7  13   21   31   43   57  ...
2     6  10  16   24   34   46   60  ...
3    11  15  21   29   39   51   65  ...
4    18  22  28   36   46   58   72  ...
5    27  31  37   45   55   67   80  ...
6    38  42  48   56   66   78   91  ...
7    51  55  61   68   79   91  105  ...
8    66  70  76   83   94  106  120  ...
9    83  87  93  101  111  123  137  ...
..   ..  ..  ..  ...  ...  ...  ...
		

Crossrefs

Cf. Column 1 = A059100(n), column 2 = A114949(n), column 3 = A241748(n), column 4 = A241850(n), column 5 = A114964(n), row 0 = A002378(k), row 1 = A002061(k+1).

A114965 a(n) = n^2 + 34.

Original entry on oeis.org

34, 35, 38, 43, 50, 59, 70, 83, 98, 115, 134, 155, 178, 203, 230, 259, 290, 323, 358, 395, 434, 475, 518, 563, 610, 659, 710, 763, 818, 875, 934, 995, 1058, 1123, 1190, 1259, 1330, 1403, 1478, 1555, 1634, 1715, 1798, 1883, 1970, 2059, 2150, 2243, 2338, 2435
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Conjecture: n^2 + 34 != x^k for all n,x and k > 1.
The conjecture is true: See Cohn. - James Rayman, Feb 14 2023

Crossrefs

Programs

  • Mathematica
    34+Range[50]^2  (* Harvey P. Dale, Jan 28 2011 *)
  • PARI
    a(n)=n^2+34

Formula

From Elmo R. Oliveira, Jan 25 2025: (Start)
G.f.: (34 - 67*x + 35*x^2)/(1 - x)^3.
E.g.f.: (34 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
a(0) = 34 prepended by Elmo R. Oliveira, Jan 26 2025
Showing 1-7 of 7 results.