cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A241850 a(n) = n^2 + 20.

Original entry on oeis.org

20, 21, 24, 29, 36, 45, 56, 69, 84, 101, 120, 141, 164, 189, 216, 245, 276, 309, 344, 381, 420, 461, 504, 549, 596, 645, 696, 749, 804, 861, 920, 981, 1044, 1109, 1176, 1245, 1316, 1389, 1464, 1541, 1620, 1701, 1784, 1869, 1956, 2045, 2136, 2229, 2324, 2421, 2520
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Comments

The only solution for x at the Diophantine equation x^2 + 20 = y^m (with m > 2) is 14: 14^2 + 20 = a(14) = 6^3. - Bruno Berselli, May 01 2014

Crossrefs

Cf. similar sequences listed in A114962.

Programs

  • Magma
    [n^2+20: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 20, {n, 0, 60}]
  • PARI
    a(n)=n^2+20 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (20 - 39*x + 21*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 03 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(20)*Pi*coth(sqrt(20)*Pi))/40.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(20)*Pi*cosech(sqrt(20)*Pi))/40. (End)
E.g.f.: exp(x)*(20 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A114948 a(n) = n^2 + 10.

Original entry on oeis.org

10, 11, 14, 19, 26, 35, 46, 59, 74, 91, 110, 131, 154, 179, 206, 235, 266, 299, 334, 371, 410, 451, 494, 539, 586, 635, 686, 739, 794, 851, 910, 971, 1034, 1099, 1166, 1235, 1306, 1379, 1454, 1531, 1610, 1691, 1774, 1859, 1946, 2035, 2126, 2219, 2314, 2411, 2510
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Conjecture: n^2 + 10 != x^k for all n,x, and k > 1.
The conjecture is true: See Cohn. - James Rayman, Feb 14 2023

Crossrefs

Programs

Formula

From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(10)*Pi*coth(sqrt(10)*Pi))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(10)*Pi*cosech(sqrt(10)*Pi))/20. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (3/sqrt(10))*sinh(3*Pi)/sinh(sqrt(10)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(11/10)*sinh(sqrt(11)*Pi)/sinh(sqrt(10)*Pi). (End)
From Elmo R. Oliveira, Jan 25 2025: (Start)
G.f.: (10 - 19*x + 11*x^2)/(1 - x)^3.
E.g.f.: (10 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
a(0) = 10 prepended by Elmo R. Oliveira, Jan 26 2025

A241751 a(n) = n^2 + 16.

Original entry on oeis.org

16, 17, 20, 25, 32, 41, 52, 65, 80, 97, 116, 137, 160, 185, 212, 241, 272, 305, 340, 377, 416, 457, 500, 545, 592, 641, 692, 745, 800, 857, 916, 977, 1040, 1105, 1172, 1241, 1312, 1385, 1460, 1537, 1616, 1697, 1780, 1865, 1952, 2041, 2132, 2225, 2320, 2417, 2516
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.
Cf. A000290, A243451 (primes).

Programs

Formula

G.f.: (16 - 31*x + 17*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 03 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 4*Pi*coth(4*Pi))/32.
Sum_{n>=0} (-1)^n/a(n) = (1 + 4*Pi*cosech(4*Pi))/32. (End)
E.g.f.: exp(x)*(16 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A114963 a(n) = n^2 + 22.

Original entry on oeis.org

22, 23, 26, 31, 38, 47, 58, 71, 86, 103, 122, 143, 166, 191, 218, 247, 278, 311, 346, 383, 422, 463, 506, 551, 598, 647, 698, 751, 806, 863, 922, 983, 1046, 1111, 1178, 1247, 1318, 1391, 1466, 1543, 1622, 1703, 1786, 1871, 1958, 2047, 2138, 2231, 2326, 2423, 2522, 2623
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 22".
x^2 + 22 != y^n for all x,y and n > 1.

Crossrefs

Cf. similar sequences listed in A114962.

Programs

Formula

G.f.: (22 - 43*x + 23*x^2)/(1 - x)^3. - Vincenzo Librandi, Apr 30 2014
From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(22)*Pi*coth(sqrt(22)*Pi))/44.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(22)*Pi*cosech(sqrt(22)*Pi))/44. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(22 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

a(0)=22 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 04 2020

A241748 a(n) = n^2 + 12.

Original entry on oeis.org

12, 13, 16, 21, 28, 37, 48, 61, 76, 93, 112, 133, 156, 181, 208, 237, 268, 301, 336, 373, 412, 453, 496, 541, 588, 637, 688, 741, 796, 853, 912, 973, 1036, 1101, 1168, 1237, 1308, 1381, 1456, 1533, 1612, 1693, 1776, 1861, 1948, 2037, 2128, 2221, 2316, 2413, 2512
Offset: 0

Views

Author

Vincenzo Librandi, Apr 30 2014

Keywords

Comments

3/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the counterclockwise Pappus chain of the arbelos with semicircle radii r, r1 = 3*r/4, r2 = r - r1 = r/4. See a comment on A114949 also for the MathWorld Pappus chain link. - Wolfdieter Lang, Jun 29 2015

Crossrefs

Cf. similar sequences listed in A114962.
Cf. A114964 (see comment), A114949.

Programs

  • Magma
    [n^2+12: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 12, {n, 0, 60}]
  • PARI
    a(n)=n^2+12 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (12-23*x+13*x^2)/(1-x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
(2*n)*a(n) = (n+2)^3 + (n-2)^3; also, 2*a(n) = (n+sqrt(12))^2 + (n-sqrt(12))^2. - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(12)*Pi*coth(sqrt(12)*Pi))/24.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(12)*Pi*cosech(sqrt(12)*Pi))/24. (End)
E.g.f.: exp(x)*(12 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A241847 a(n) = n^2 + 17.

Original entry on oeis.org

17, 18, 21, 26, 33, 42, 53, 66, 81, 98, 117, 138, 161, 186, 213, 242, 273, 306, 341, 378, 417, 458, 501, 546, 593, 642, 693, 746, 801, 858, 917, 978, 1041, 1106, 1173, 1242, 1313, 1386, 1461, 1538, 1617, 1698, 1781, 1866, 1953, 2042, 2133, 2226, 2321, 2418, 2517
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.

Programs

  • Magma
    [n^2+17: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 17, {n, 0, 60}]
  • PARI
    a(n)=n^2+17 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (17 - 33*x + 18*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 03 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(17)*Pi*coth(sqrt(17)*Pi))/34.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(17)*Pi*cosech(sqrt(17)*Pi))/34. (End)
E.g.f.: exp(x)*(17 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A241749 a(n) = n^2 + 13.

Original entry on oeis.org

13, 14, 17, 22, 29, 38, 49, 62, 77, 94, 113, 134, 157, 182, 209, 238, 269, 302, 337, 374, 413, 454, 497, 542, 589, 638, 689, 742, 797, 854, 913, 974, 1037, 1102, 1169, 1238, 1309, 1382, 1457, 1534, 1613, 1694, 1777, 1862, 1949, 2038, 2129, 2222, 2317, 2414, 2513
Offset: 0

Views

Author

Vincenzo Librandi, Apr 30 2014

Keywords

Comments

For i=0..28, 2*a(i) + 3 is prime. - Vincenzo Librandi, Jun 01 2014

Crossrefs

Cf. similar sequences listed in A114962.

Programs

  • Magma
    [n^2+13: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 13, {n, 0, 60}]
  • PARI
    a(n)=n^2+13 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (13 - 25*x + 14*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(13)*Pi*coth(sqrt(13)*Pi))/26.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(13)*Pi*cosech(sqrt(13)*Pi))/26. (End)
E.g.f.: exp(x)*(13 + x + x^2). - Elmo R. Oliveira, Apr 20 2025

A241848 a(n) = n^2 + 18.

Original entry on oeis.org

18, 19, 22, 27, 34, 43, 54, 67, 82, 99, 118, 139, 162, 187, 214, 243, 274, 307, 342, 379, 418, 459, 502, 547, 594, 643, 694, 747, 802, 859, 918, 979, 1042, 1107, 1174, 1243, 1314, 1387, 1462, 1539, 1618, 1699, 1782, 1867, 1954, 2043, 2134, 2227, 2322, 2419, 2518
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.

Programs

  • Magma
    [n^2+18: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 18, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{18,19,22},60] (* Harvey P. Dale, Jan 18 2025 *)
  • PARI
    a(n)=n^2+18 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (18 - 35*x + 19*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 03 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(18)*Pi*coth(sqrt(18)*Pi))/36.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(18)*Pi*cosech(sqrt(18)*Pi))/36. (End)
E.g.f.: exp(x)*(18 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A241851 a(n) = n^2 + 21.

Original entry on oeis.org

21, 22, 25, 30, 37, 46, 57, 70, 85, 102, 121, 142, 165, 190, 217, 246, 277, 310, 345, 382, 421, 462, 505, 550, 597, 646, 697, 750, 805, 862, 921, 982, 1045, 1110, 1177, 1246, 1317, 1390, 1465, 1542, 1621, 1702, 1785, 1870, 1957, 2046, 2137, 2230, 2325, 2422, 2521
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequence listed in A114962.

Programs

  • Magma
    [n^2+21: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 21, {n, 0, 60}]
  • PARI
    a(n)=n^2+21 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (21 - 41*x + 22*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(21)*Pi*coth(sqrt(21)*Pi))/42.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(21)*Pi*cosech(sqrt(21)*Pi))/42. (End)
E.g.f.: exp(x)*(21 + x + x^2). - Elmo R. Oliveira, Nov 29 2024

A241750 a(n) = n^2 + 15.

Original entry on oeis.org

15, 16, 19, 24, 31, 40, 51, 64, 79, 96, 115, 136, 159, 184, 211, 240, 271, 304, 339, 376, 415, 456, 499, 544, 591, 640, 691, 744, 799, 856, 915, 976, 1039, 1104, 1171, 1240, 1311, 1384, 1459, 1536, 1615, 1696, 1779, 1864, 1951, 2040, 2131, 2224, 2319, 2416, 2515
Offset: 0

Views

Author

Vincenzo Librandi, May 01 2014

Keywords

Crossrefs

Cf. similar sequences listed in A114962.

Programs

  • Magma
    [n^2+15: n in [0..60]];
    
  • Mathematica
    Table[n^2 + 15, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{15,16,19},60] (* Harvey P. Dale, Jul 04 2025 *)
  • PARI
    a(n)=n^2+15 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (15 - 29*x + 16*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 03 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(15)*Pi*coth(sqrt(15)*Pi))/30.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(15)*Pi*cosech(sqrt(15)*Pi))/30. (End)
E.g.f.: exp(x)*(15 + x + x^2). - Elmo R. Oliveira, Nov 29 2024
Showing 1-10 of 15 results. Next