cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A114964 a(n) = n^2 + 30.

Original entry on oeis.org

30, 31, 34, 39, 46, 55, 66, 79, 94, 111, 130, 151, 174, 199, 226, 255, 286, 319, 354, 391, 430, 471, 514, 559, 606, 655, 706, 759, 814, 871, 930, 991, 1054, 1119, 1186, 1255, 1326, 1399, 1474, 1551, 1630, 1711, 1794, 1879, 1966, 2055, 2146, 2239, 2334, 2431, 2530
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

x^2 + 30 != y^n for all x,y and n > 1, so this is a subsequence of A007916.
From Bruno Berselli, May 12 2014: (Start)
This is the case k=5 of the identity n^2 + k*(k+1) = (Sum_{i=-k..k} (n+i)^3)/((2*k+1)*n).
Similar sequences: A059100 (k=1), A114949 (k=2), A241748 (k=3), A241850 (k=4). (End)
The old name of this sequence was: Numbers of the form x^2 + 30. Also numbers that are not a perfect power.

Examples

			11*4*a(4) = (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 = 2024. - _Bruno Berselli_, May 12 2014
		

Crossrefs

Programs

  • Mathematica
    Range[0,60]^2+30 (* Harvey P. Dale, Oct 17 2022 *)
  • PARI
    g(n,p) = for(x=0,n,y=x^2+p;print1(y","));
    
  • PARI
    a(n) = n^2 + 30; \\ Altug Alkan, Apr 30 2018

Formula

From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(30)*Pi*coth(sqrt(30)*Pi))/60.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(30)*Pi*cosech(sqrt(30)*Pi))/60. (End)
From Elmo R. Oliveira, Dec 30 2024: (Start)
G.f.: (30 - 59*x + 31*x^2)/(1 - x)^3.
E.g.f.: (30 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

New name from Shawn A. Broyles and Altug Alkan, Apr 30 2018

A114948 a(n) = n^2 + 10.

Original entry on oeis.org

10, 11, 14, 19, 26, 35, 46, 59, 74, 91, 110, 131, 154, 179, 206, 235, 266, 299, 334, 371, 410, 451, 494, 539, 586, 635, 686, 739, 794, 851, 910, 971, 1034, 1099, 1166, 1235, 1306, 1379, 1454, 1531, 1610, 1691, 1774, 1859, 1946, 2035, 2126, 2219, 2314, 2411, 2510
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Conjecture: n^2 + 10 != x^k for all n,x, and k > 1.
The conjecture is true: See Cohn. - James Rayman, Feb 14 2023

Crossrefs

Programs

Formula

From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(10)*Pi*coth(sqrt(10)*Pi))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(10)*Pi*cosech(sqrt(10)*Pi))/20. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (3/sqrt(10))*sinh(3*Pi)/sinh(sqrt(10)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(11/10)*sinh(sqrt(11)*Pi)/sinh(sqrt(10)*Pi). (End)
From Elmo R. Oliveira, Jan 25 2025: (Start)
G.f.: (10 - 19*x + 11*x^2)/(1 - x)^3.
E.g.f.: (10 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
a(0) = 10 prepended by Elmo R. Oliveira, Jan 26 2025

A243618 Table read by antidiagonals: T(n,k) is the curvature of a circle in a nested Pappus chain (see Comments for details).

Original entry on oeis.org

2, 6, 3, 12, 7, 6, 20, 13, 10, 11, 30, 21, 16, 15, 18, 42, 31, 24, 21, 22, 27, 56, 43, 34, 29, 28, 31, 38, 72, 57, 46, 39, 36, 37, 42, 51, 90, 73, 60, 51, 46, 45, 48, 55, 66, 110, 91, 76, 65, 58, 55, 56, 61, 70, 83, 132
Offset: 0

Views

Author

Kival Ngaokrajang, Jun 07 2014

Keywords

Comments

Refer to sequential curvatures from Wikipedia. For any integer k > 0, there exists an Apollonian gasket defined by the following curvatures:
(-k, k+1, k*(k+1), k*(k+1)+1).
For example, the gaskets defined by (-1, 2, 2, 3), (-2, 3, 6, 7), (-3, 4, 12, 13), ..., all follow this pattern (all curvatures are integral). Because every interior circle that is defined by k+1 can become the bounding circle (defined by -k) in another gasket, these gaskets can be nested. When one considers only circles that contact both circles -k and k+1, the pattern will be nested Pappus chains. T(n,k) is the curvature when n = 0 is the circle at the center and n > 0 is in the clockwise direction, k >= 1 for each nested iteration. See illustration in links.

Examples

			Table begins:
n/k   1   2   3    4    5    6    7  ...
0     2   6  12   20   30   42   56  ...
1     3   7  13   21   31   43   57  ...
2     6  10  16   24   34   46   60  ...
3    11  15  21   29   39   51   65  ...
4    18  22  28   36   46   58   72  ...
5    27  31  37   45   55   67   80  ...
6    38  42  48   56   66   78   91  ...
7    51  55  61   68   79   91  105  ...
8    66  70  76   83   94  106  120  ...
9    83  87  93  101  111  123  137  ...
..   ..  ..  ..  ...  ...  ...  ...
		

Crossrefs

Cf. Column 1 = A059100(n), column 2 = A114949(n), column 3 = A241748(n), column 4 = A241850(n), column 5 = A114964(n), row 0 = A002378(k), row 1 = A002061(k+1).

A114965 a(n) = n^2 + 34.

Original entry on oeis.org

34, 35, 38, 43, 50, 59, 70, 83, 98, 115, 134, 155, 178, 203, 230, 259, 290, 323, 358, 395, 434, 475, 518, 563, 610, 659, 710, 763, 818, 875, 934, 995, 1058, 1123, 1190, 1259, 1330, 1403, 1478, 1555, 1634, 1715, 1798, 1883, 1970, 2059, 2150, 2243, 2338, 2435
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Conjecture: n^2 + 34 != x^k for all n,x and k > 1.
The conjecture is true: See Cohn. - James Rayman, Feb 14 2023

Crossrefs

Programs

  • Mathematica
    34+Range[50]^2  (* Harvey P. Dale, Jan 28 2011 *)
  • PARI
    a(n)=n^2+34

Formula

From Elmo R. Oliveira, Jan 25 2025: (Start)
G.f.: (34 - 67*x + 35*x^2)/(1 - x)^3.
E.g.f.: (34 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
a(0) = 34 prepended by Elmo R. Oliveira, Jan 26 2025
Showing 1-5 of 5 results.