cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243451 Primes of the form n^2 + 16.

Original entry on oeis.org

17, 41, 97, 137, 241, 457, 641, 857, 977, 1697, 2417, 2617, 3041, 4241, 5641, 6257, 6577, 7937, 8297, 9041, 9817, 11897, 13241, 14177, 14657, 15641, 16657, 22817, 27241, 32057, 36497, 44537, 47977, 48857, 52457, 53377, 60041, 62017, 70241, 75641, 78977, 83537
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2014

Keywords

Comments

Intersection of A241751 and A028916; conjecture: sequence is infinite. - Reinhard Zumkeller, Apr 11 2015

Crossrefs

Cf. A122062 (associated n).
Cf. similar sequences listed in A243449.
Cf. A010051, A241751; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).

Programs

  • Haskell
    a243451 n = a243451_list !! (n-1)
    a243451_list = [x | x <- a241751_list, a010051' x == 1]
    -- Reinhard Zumkeller, Apr 11 2015
    
  • Magma
    [a: n in [0..1000] | IsPrime(a) where a is n^2+16];
    
  • Mathematica
    Select[Table[n^2 + 16, {n, 0, 1000}], PrimeQ]
    Select[Range[1,301,2]^2+16,PrimeQ] (* Harvey P. Dale, Nov 05 2015 *)
  • PARI
    list(lim)=if(lim<17,return([])); my(v=List(),t); forstep(n=1,sqrtint(lim\1-16),2, if(isprime(t=n^2+16), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Aug 18 2017

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A098077 a(n) = n^2*(n+1)*(2*n+1)/3.

Original entry on oeis.org

2, 20, 84, 240, 550, 1092, 1960, 3264, 5130, 7700, 11132, 15600, 21294, 28420, 37200, 47872, 60690, 75924, 93860, 114800, 139062, 166980, 198904, 235200, 276250, 322452, 374220, 431984, 496190, 567300, 645792, 732160, 826914, 930580, 1043700
Offset: 1

Views

Author

Alexander Adamchuk, Oct 24 2004

Keywords

Comments

Sum of all matrix elements M(i,j) = i^2 + j^2 (i,j = 1,...,n).
From Torlach Rush, Jan 05 2020: (Start)
a(n) = n * A006331(n).
tr(M(n)) = A006331(n).
The sum of the antidiagonal of M(n) equals tr(M(n)).
M(n) = M(n)' (Symmetric).
M(1,) = M(,1) = A002522(n), n > 0.
M(2,) = M(,2) = A087475(n), n > 0.
M(3,) = M(,3) = A189834(n), n > 0.
M(4,) = M(,4) = A241751(n), n > 0.
(End)
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, p and p+q. - Wesley Ivan Hurt, Apr 15 2018

Examples

			a(2) = (1^2 + 1^2) + (1^2 + 2^2) + (2^2 + 1^2) + (2^2 + 2^2) = 2 + 5 + 5 + 8 = 20.
		

Crossrefs

Programs

  • Magma
    [n^2*(n+1)*(2*n+1)/3: n in [1..40]]; // G. C. Greubel, Apr 09 2023
    
  • Mathematica
    Table[ Sum[i^2 + j^2, {i, n}, {j, n}], {n, 35}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {2, 20, 84, 240, 550}, 40] (* Vincenzo Librandi, Apr 16 2018 *)
  • PARI
    a(n)=n^2*(n+1)*(2*n+1)/3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [n^2*(n+1)*(2*n+1)/3 for n in range(1,41)] # G. C. Greubel, Apr 09 2023

Formula

a(n) = Sum_{j=1..n} Sum_{i=1..n} (i^2 + j^2).
G.f.: 2*x*(1 + 5*x + 2*x^2)/(1-x)^5. - Colin Barker, May 04 2012
E.g.f.: (1/3)*exp(x)*x*(6 + 24*x + 15*x^2 + 2*x^3) . - Stefano Spezia, Jan 06 2020
a(n) = a(n-1) + (8*n^3 - 3*n^2 + n)/3. - Torlach Rush, Jan 07 2020
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/2 + 24*log(2) - 21.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/4 - 6*Pi - 6*log(2) + 21. (End)
From G. C. Greubel, Apr 09 2023: (Start)
a(n) = (1/4)*A100431(n-1).
a(n) = 2*A108678(n-1). (End)

Extensions

More terms from Robert G. Wilson v, Nov 01 2004
New definition from Ralf Stephan, Dec 01 2004

A373710 Triangle read by rows: T(n,k) is the area of the square whose vertices divide the sides n of a circumscribed square into integer sections k and n - k, 0 <= k <= floor(n/2).

Original entry on oeis.org

0, 1, 4, 2, 9, 5, 16, 10, 8, 25, 17, 13, 36, 26, 20, 18, 49, 37, 29, 25, 64, 50, 40, 34, 32, 81, 65, 53, 45, 41, 100, 82, 68, 58, 52, 50, 121, 101, 85, 73, 65, 61, 144, 122, 104, 90, 80, 74, 72, 169, 145, 125, 109, 97, 89, 85, 196, 170, 148, 130, 116, 106, 100, 98
Offset: 0

Views

Author

Felix Huber, Jun 17 2024

Keywords

Comments

For a sketch see linked illustration "Square in square".

Examples

			Triangle T(n,k) begins:
   n\k   0     1     2     3     4     5     6     7   ...
   0     0
   1     1
   2     4     2
   3     9     5
   4    16    10     8
   5    25    17    13
   6    36    26    20    18
   7    49    37    29    25
   8    64    50    40    34    32
   9    81    65    53    45    41
  10   100    82    68    58    52    50
  11   121   101    85    73    65    61
  12   144   122   104    90    80    74    72
  13   169   145   125   109    97    89    85
  14   196   170   148   130   116   106   100    98
  ...
		

Crossrefs

Cf. A000290(first column), A005563 (second column), A048147 (rows: first half of each diagonal there), A087475 (third column), A189834 (fourth column), A241751 (fifth column).

Programs

  • Maple
    A373710:=(n,k)->n^2+2*k^2-2*n*k;
    seq(seq(A373710(n,k),k=0..floor(n/2)),n=0..14);

Formula

T(n,k) = n^2 + 2*k^2 - 2*n*k, 0 <= k <= floor(n/2).
Sequence of row n = r: a(i) = 2*i^2 - 4*i - 2*r*i + r^2 + 2*r + 2, 1 <= i <= floor(r/2 + 1).
Sequence of column k = c: a(j) = j^2 - 2*j + 2*c*j + 2*c^2 - 2*c + 1, j >= 1.
Showing 1-4 of 4 results.