cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A114948 a(n) = n^2 + 10.

Original entry on oeis.org

10, 11, 14, 19, 26, 35, 46, 59, 74, 91, 110, 131, 154, 179, 206, 235, 266, 299, 334, 371, 410, 451, 494, 539, 586, 635, 686, 739, 794, 851, 910, 971, 1034, 1099, 1166, 1235, 1306, 1379, 1454, 1531, 1610, 1691, 1774, 1859, 1946, 2035, 2126, 2219, 2314, 2411, 2510
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Conjecture: n^2 + 10 != x^k for all n,x, and k > 1.
The conjecture is true: See Cohn. - James Rayman, Feb 14 2023

Crossrefs

Programs

Formula

From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(10)*Pi*coth(sqrt(10)*Pi))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(10)*Pi*cosech(sqrt(10)*Pi))/20. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (3/sqrt(10))*sinh(3*Pi)/sinh(sqrt(10)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(11/10)*sinh(sqrt(11)*Pi)/sinh(sqrt(10)*Pi). (End)
From Elmo R. Oliveira, Jan 25 2025: (Start)
G.f.: (10 - 19*x + 11*x^2)/(1 - x)^3.
E.g.f.: (10 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
a(0) = 10 prepended by Elmo R. Oliveira, Jan 26 2025

A114965 a(n) = n^2 + 34.

Original entry on oeis.org

34, 35, 38, 43, 50, 59, 70, 83, 98, 115, 134, 155, 178, 203, 230, 259, 290, 323, 358, 395, 434, 475, 518, 563, 610, 659, 710, 763, 818, 875, 934, 995, 1058, 1123, 1190, 1259, 1330, 1403, 1478, 1555, 1634, 1715, 1798, 1883, 1970, 2059, 2150, 2243, 2338, 2435
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Conjecture: n^2 + 34 != x^k for all n,x and k > 1.
The conjecture is true: See Cohn. - James Rayman, Feb 14 2023

Crossrefs

Programs

  • Mathematica
    34+Range[50]^2  (* Harvey P. Dale, Jan 28 2011 *)
  • PARI
    a(n)=n^2+34

Formula

From Elmo R. Oliveira, Jan 25 2025: (Start)
G.f.: (34 - 67*x + 35*x^2)/(1 - x)^3.
E.g.f.: (34 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by Charles R Greathouse IV, Aug 09 2010
a(0) = 34 prepended by Elmo R. Oliveira, Jan 26 2025
Showing 1-3 of 3 results.