cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A228244 Primes of the form k^2 + 17.

Original entry on oeis.org

17, 53, 593, 3617, 4373, 6101, 8117, 11681, 20753, 26261, 30293, 34613, 54773, 63521, 86453, 90017, 101141, 108917, 112913, 116981, 138401, 156833, 176417, 191861, 207953, 213461, 219041, 248021, 278801, 352853, 404513, 419921, 427733, 451601, 518417, 562517
Offset: 1

Views

Author

Michel Marcus, Aug 18 2013

Keywords

Examples

			17 = 0^2 + 17 is prime.
53 = 6^2 + 17 is prime.
		

Crossrefs

Programs

  • Magma
    [m: n in [0..900] | IsPrime(m) where m is n^2+17]; // Bruno Berselli, Aug 18 2013
  • Mathematica
    Select[Table[n^2 + 17, {n, 0, 900}], PrimeQ] (* Bruno Berselli, Aug 18 2013 *)
  • PARI
    isp(n) = isprime(n) && issquare(n-17);
    

Formula

a(n) = A241847(A264790(n)). - Elmo R. Oliveira, Apr 21 2025

A264790 Numbers k such that k^2 + 17 is prime.

Original entry on oeis.org

0, 6, 24, 60, 66, 78, 90, 108, 144, 162, 174, 186, 234, 252, 294, 300, 318, 330, 336, 342, 372, 396, 420, 438, 456, 462, 468, 498, 528, 594, 636, 648, 654, 672, 720, 750, 798, 804, 834, 858, 888, 924, 930, 966, 984, 990, 1014, 1026, 1032, 1086, 1158, 1194, 1200
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2015

Keywords

Comments

Primes of the form k^2 + 17 have a representation as a sum of 2 squares because they belong to A002144.
All terms are multiple of 6.

Examples

			a(3) = 24 because 24^2 + 17 = 593, which is prime.
		

Crossrefs

Cf. A228244 (associated primes).
Other sequences of the type "Numbers n such that n^2 + k is prime": A005574 (k=1), A067201 (k=2), A049422 (k=3), A007591 (k=4), A078402 (k=5), A114269 (k=6), A114270 (k=7), A114271 (k=8), A114272 (k=9), A114273 (k=10), A114274 (k=11), A114275 (k=12), A113536 (k=13), A121250 (k=14), A121982 (k=15), A122062 (k=16).

Programs

  • Magma
    [n: n in [0..1200 ] | IsPrime(n^2+17)]; // Vincenzo Librandi, Nov 25 2015
  • Mathematica
    Select[Range[0, 1200], PrimeQ[#^2 + 17] &] (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=0, 1e3, if(isprime(n^2+17), print1(n, ", "))) \\ Altug Alkan, Nov 25 2015
    

Formula

A000005(A241847(a(n))) = 2.
A241847(a(n)) = A228244(n).

Extensions

Edited by Bruno Berselli, Nov 26 2015
Showing 1-3 of 3 results.