A114976 Number of subsets of {1,2,....,n} with an arithmetic mean that is an integer and also a divisor of n.
1, 2, 2, 5, 2, 14, 2, 30, 11, 80, 2, 280, 2, 764, 128, 2557, 2, 9036, 2, 29656, 1958, 103134, 2, 373454, 119, 1300824, 36992, 4681568, 2, 17119030, 2, 61799636, 758982, 226451040, 2180, 837469677, 2, 3084255132, 16391220, 11451833394, 2, 42746493556, 2
Offset: 1
Keywords
Examples
a(9) = 11: {1}, {3}, {9}, {1,5}, {2,4}, {1,2,6}, {1,3,5}, {2,3,4}, {1,2,3,6}, {1,2,4,5} and {1,2,3,4,5}, e.g. also {1,4,7} has an integral arithmetic mean, but (1+4+7)/3 = 4 is not a divisor of 9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100
Programs
-
Maple
b:= proc(n, m, s, c) option remember; `if`(n=0, `if`(c>0 and denom(s)=1 and irem(m, s)=0, 1, 0), b(n-1, m, s, c)+b(n-1, m, (s*c+n)/(c+1), c+1)) end: a:= proc(n) option remember; forget (b); b(n$2, 0$2) end: seq(a(n), n=1..50); # Alois P. Heinz, Jul 15 2019
-
Mathematica
b[n_, m_, s_, c_] := b[n, m, s, c] = If[n==0, If[c>0 && Denominator[s]==1 && Mod[m, s]==0, 1, 0], b[n-1, m, s, c]+b[n-1, m, (s c + n)/(c+1), c+1]]; a[n_] := b[n, n, 0, 0]; Array[a, 50] (* Jean-François Alcover, Nov 04 2020, after Alois P. Heinz *)
Extensions
a(27)-a(38) from Donovan Johnson, Jun 10 2010
a(39)-a(43) from Alois P. Heinz, Jul 15 2019
Comments