A114992 Primes of the form 2^a * 5^b * 7^c + 1 for positive a, b, c.
71, 281, 491, 701, 2801, 4481, 7001, 7841, 12251, 13721, 17921, 28001, 34301, 54881, 70001, 78401, 85751, 122501, 125441, 137201, 168071, 240101, 280001, 286721, 437501, 490001
Offset: 1
Keywords
Examples
a(1) = 71 = 2^1 * 5^1 * 7^1 + 1. a(2) = 281 = 2^3 * 5^1 * 7^1 + 1. a(3) = 491 = 2^1 * 5^1 * 7^2 + 1. a(4) = 701 = 2^2 * 5^2 * 7^1 + 1. a(5) = 2801 = 2^4 * 5^2 * 7^1 + 1.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{nn=30},Take[Select[Union[2^#[[1]]*5^#[[2]]*7^#[[3]]+1&/@Tuples[ Range[nn],3]],PrimeQ],nn]] (* Harvey P. Dale, Aug 24 2012 *)
-
PARI
find(lim)=my(v=List(), t); for(b=1,log(lim\14)\log(5), for(c=1,log(lim\2\5^b)/log(7), t=2*5^b*7^c; while(t
Charles R Greathouse IV, Feb 17 2011
Extensions
Corrected by T. D. Noe, Nov 15 2006
Comments