cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114997 Number of ordered trees with n edges and no unary or binary nodes.

Original entry on oeis.org

0, 0, 1, 1, 1, 4, 8, 13, 31, 71, 144, 318, 729, 1611, 3604, 8249, 18803, 42907, 98858, 228474, 528735, 1228800, 2865180, 6693712, 15676941, 36807239, 86584783, 204060509, 481823778, 1139565120, 2699329341, 6403500057, 15211830451, 36183117255, 86171536894, 205459894230, 490417795075
Offset: 1

Views

Author

Nachum Dershowitz, Feb 23 2006

Keywords

Comments

Also counts sequences of n natural numbers, excluding 1 and 2, such that the sum of every prefix is no more than its length.
a(n) is the number of Dyck paths of semilength n with all ascents of length >= 3. For example, a(6) = 4 counts U^6.D^6, U^3.D.U^3.D^5, U^3.D^2.U^3.D^4, U^3.D^3.U^3.D^3 where ^ denotes repetition and a dot denotes concatenation. - David Callan, Dec 08 2021

Crossrefs

Cf. A000108 (rev. of x/(1+1*Sum_{k>=1} x^k) ), A005043 (rev. of x/(1+x*Sum_{k>=1} x^k) ), A215341 (rev. of x/(1+x^3*Sum_{k>=1} x^k) ).

Programs

  • Maple
    eq := x^3*A^3+x*A^2-(1+x)*A+1 = 0: A := RootOf(eq, A): Aser := series(A, x = 0, 40): seq(coeff(Aser, x, n), n = 1 .. 38); # Emeric Deutsch, Jan 13 2015
  • Mathematica
    Table[Sum[1/(n+1)*Binomial[n+1,k]*Binomial[2*k-n-3,n-k],{k,Ceiling[(n+3)/2],n}],{n,1,20}] (* Vaclav Kotesovec, Mar 22 2014 *)
  • PARI
    a(n)=sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ Joerg Arndt, Aug 19 2012
    
  • PARI
    N=66; gf=serreverse(x/(1+x^2*sum(k=1,N,x^k))+O(x^N)) / x;
    /* = 1 + x^3 + x^4 + x^5 + 4*x^6 + 8*x^7 + 13*x^8 + 31*x^9 + ... */
    v114997=Vec(gf) /* = [1, 0, 0, 1, 1, 1, 4, 8, 13, 31, ...] */  \\ Joerg Arndt, Aug 19 2012

Formula

a(n) = Sum_{(n+3)/2 <= k <= n} (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)).
If A(x) is the g.f. for the sequence with a(0)=1, then x^3*A^3+x*A^2-(1 + x)*A+1 = 0. - Emeric Deutsch, Jan 13 2015
Let A(x) be the g.f. for the sequence with a(0)=1, then x*A(x) is the reversion of x/(1+x^2*sum(k>=1,x^k)). - Joerg Arndt, Aug 19 2012 (proved by Emeric Deutsch, Jan 13 2015)
Recurrence: (n+1)*(n+2)*(28*n^2 - 38*n - 15)*a(n) = -4*(n+1)*(14*n^3 - 12*n^2 + 7*n - 15)*a(n-1) + (n-2)*(140*n^3 + 90*n^2 - 221*n + 45)*a(n-2) + 6*(n-2)*(28*n^3 - 24*n^2 - 75*n + 95)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 18*n - 25)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ c / (n^(3/2) * r^n), where r = (4*sqrt(2) - 3 + 23*sqrt((344*sqrt(2))/529 - 235/529))/46 = 0.402505948621022106992... is the root of the equation 23*r^4+6*r^3+5*r^2-2*r-1 = 0 and c = sqrt((280 + 133*sqrt(2) - 25*sqrt(14*(11 + 8*sqrt(2)))) / (7*Pi))/4 = 0.273007516... - Vaclav Kotesovec, Mar 22 2014, updated Jan 14 2015

Extensions

Offset set to 1 by Joerg Arndt, Aug 19 2012