A114997 Number of ordered trees with n edges and no unary or binary nodes.
0, 0, 1, 1, 1, 4, 8, 13, 31, 71, 144, 318, 729, 1611, 3604, 8249, 18803, 42907, 98858, 228474, 528735, 1228800, 2865180, 6693712, 15676941, 36807239, 86584783, 204060509, 481823778, 1139565120, 2699329341, 6403500057, 15211830451, 36183117255, 86171536894, 205459894230, 490417795075
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Nachum Dershowitz and Shmuel Zaks, More patterns in trees: Up and down, young and old, odd and even, SIAM J. Discrete Mathematics, 23 (2009), 447-465.
Crossrefs
Programs
-
Maple
eq := x^3*A^3+x*A^2-(1+x)*A+1 = 0: A := RootOf(eq, A): Aser := series(A, x = 0, 40): seq(coeff(Aser, x, n), n = 1 .. 38); # Emeric Deutsch, Jan 13 2015
-
Mathematica
Table[Sum[1/(n+1)*Binomial[n+1,k]*Binomial[2*k-n-3,n-k],{k,Ceiling[(n+3)/2],n}],{n,1,20}] (* Vaclav Kotesovec, Mar 22 2014 *)
-
PARI
a(n)=sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ Joerg Arndt, Aug 19 2012
-
PARI
N=66; gf=serreverse(x/(1+x^2*sum(k=1,N,x^k))+O(x^N)) / x; /* = 1 + x^3 + x^4 + x^5 + 4*x^6 + 8*x^7 + 13*x^8 + 31*x^9 + ... */ v114997=Vec(gf) /* = [1, 0, 0, 1, 1, 1, 4, 8, 13, 31, ...] */ \\ Joerg Arndt, Aug 19 2012
Formula
a(n) = Sum_{(n+3)/2 <= k <= n} (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)).
If A(x) is the g.f. for the sequence with a(0)=1, then x^3*A^3+x*A^2-(1 + x)*A+1 = 0. - Emeric Deutsch, Jan 13 2015
Let A(x) be the g.f. for the sequence with a(0)=1, then x*A(x) is the reversion of x/(1+x^2*sum(k>=1,x^k)). - Joerg Arndt, Aug 19 2012 (proved by Emeric Deutsch, Jan 13 2015)
Recurrence: (n+1)*(n+2)*(28*n^2 - 38*n - 15)*a(n) = -4*(n+1)*(14*n^3 - 12*n^2 + 7*n - 15)*a(n-1) + (n-2)*(140*n^3 + 90*n^2 - 221*n + 45)*a(n-2) + 6*(n-2)*(28*n^3 - 24*n^2 - 75*n + 95)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 18*n - 25)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ c / (n^(3/2) * r^n), where r = (4*sqrt(2) - 3 + 23*sqrt((344*sqrt(2))/529 - 235/529))/46 = 0.402505948621022106992... is the root of the equation 23*r^4+6*r^3+5*r^2-2*r-1 = 0 and c = sqrt((280 + 133*sqrt(2) - 25*sqrt(14*(11 + 8*sqrt(2)))) / (7*Pi))/4 = 0.273007516... - Vaclav Kotesovec, Mar 22 2014, updated Jan 14 2015
Extensions
Offset set to 1 by Joerg Arndt, Aug 19 2012
Comments