A115055 Lower level digraph derived from a voltage graph.
0, 1, 0, 0, 1, 3, 3, 2, 6, 15, 21, 24, 42, 86, 138, 192, 305, 546, 906, 1381, 2175, 3651, 6042, 9582, 15225, 24901, 40836, 65748, 105364, 170796, 278184, 450017, 724968, 1172412, 1902321, 3080367, 4975551, 8044478, 13029534, 21096027, 34114553
Offset: 1
Keywords
References
- J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley, 1987; see Figure 2.5 p. 62
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,3,3,1).
Programs
-
GAP
a:=[0,1,0,0,1,3];; for n in [7..50] do a[n]:=a[n-3]+3*a[n-4]+ 3*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Mar 22 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x/(1-(x+x^2)^3) )); // G. C. Greubel, Mar 22 2019 -
Mathematica
(* Gross page 62 voltage group L3 : weights set to one *) M = {{0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 0}} v[1] = {0, 0, 0, 0, 0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] (* alternate program *) LinearRecurrence[{0,0,1,3,3,1}, {0,1,0,0,1,3}, 50] (* G. C. Greubel, Mar 22 2019 *)
-
PARI
my(x='x+O('x^50)); concat([0], Vec(x/(1-(x+x^2)^3))) \\ G. C. Greubel, Mar 22 2019
-
Sage
(x/(1-(x+x^2)^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 22 2019
Formula
Let M be the 6x6 matrix given by: M = {{0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 0}}, then v(n) = M.v(n-1), where a(n) = v(n)(1).
From Vladimir Kruchinin, Oct 12 2011: (Start)
G.f.: x/(1-(x+x^2)^3).
a(n) = Sum_{k=0..n} binomial(3*k,n-3*k). (End)
a(n) = a(n-3) + 3*a(n-4) + 3*a(n-5) + a(n-6). - G. C. Greubel, Mar 22 2019
Extensions
Edited by G. C. Greubel, Mar 22 2019
Comments