cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115055 Lower level digraph derived from a voltage graph.

Original entry on oeis.org

0, 1, 0, 0, 1, 3, 3, 2, 6, 15, 21, 24, 42, 86, 138, 192, 305, 546, 906, 1381, 2175, 3651, 6042, 9582, 15225, 24901, 40836, 65748, 105364, 170796, 278184, 450017, 724968, 1172412, 1902321, 3080367, 4975551, 8044478, 13029534, 21096027, 34114553
Offset: 1

Views

Author

Roger L. Bagula, Dec 09 2006

Keywords

Comments

Lower level digraph derived from a voltage graph (Gross's covering graph construction) that is a generalized Fibonacci Markov. In matrix terms gives a 6 X 6 Markov with characteristic Polynomial (-1 - x + x^2)*(1 + 2*x + 2*x^2 + x^3 + x^4).
This digraph construction gives a complex substructure to the Fibonacci Pisot that is not Pisot. Gross's covering graph constructions called voltage graphs are abstractions from lower level graphs.
limit_{n to Infinity} (a(n+1)/a(n)) = Golden Mean.

References

  • J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley, 1987; see Figure 2.5 p. 62

Programs

  • GAP
    a:=[0,1,0,0,1,3];; for n in [7..50] do a[n]:=a[n-3]+3*a[n-4]+ 3*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Mar 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x/(1-(x+x^2)^3) )); // G. C. Greubel, Mar 22 2019
    
  • Mathematica
    (* Gross page 62 voltage group L3 : weights set to one *)
    M = {{0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 0}} v[1] = {0, 0, 0, 0, 0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    (* alternate program *)
    LinearRecurrence[{0,0,1,3,3,1}, {0,1,0,0,1,3}, 50] (* G. C. Greubel, Mar 22 2019 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x/(1-(x+x^2)^3))) \\ G. C. Greubel, Mar 22 2019
    
  • Sage
    (x/(1-(x+x^2)^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 22 2019
    

Formula

Let M be the 6x6 matrix given by: M = {{0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 0}}, then v(n) = M.v(n-1), where a(n) = v(n)(1).
From Vladimir Kruchinin, Oct 12 2011: (Start)
G.f.: x/(1-(x+x^2)^3).
a(n) = Sum_{k=0..n} binomial(3*k,n-3*k). (End)
a(n) = a(n-3) + 3*a(n-4) + 3*a(n-5) + a(n-6). - G. C. Greubel, Mar 22 2019

Extensions

Edited by G. C. Greubel, Mar 22 2019