A215493
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=4.
Original entry on oeis.org
0, 1, 4, 14, 49, 175, 637, 2352, 8771, 32928, 124166, 469567, 1779141, 6749211, 25623472, 97329337, 369821228, 1405502182, 5342323441, 20307982135, 77201862045, 293497548512, 1115812645899, 4242135876440, 16128056932078, 61317184775679, 233122447515741
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
-
I:=[0,1,4]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) +7*Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
-
LinearRecurrence[{7,-14,7}, {0,1,4}, 50]
-
x='x+O('x^30); concat([0], Vec(x*(1-3*x)/(1-7*x+14*x^2-7*x^3))) \\ G. C. Greubel, Apr 23 2018
A215494
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(1)=7, a(2)=21, a(3)=70.
Original entry on oeis.org
7, 21, 70, 245, 882, 3234, 12005, 44933, 169099, 638666, 2417807, 9167018, 34790490, 132119827, 501941055, 1907443237, 7249766678, 27557748813, 104759610858, 398257159370, 1514069805269, 5756205681709, 21884262613787, 83201447389466, 316323894905207
Offset: 1
We have a(3)=5*7^2 and a(6)=5*7^4, which implies that s(1)^12 + s(2)^12 + s(4)^12 = 49*(s(1)^6 + s(2)^6 + s(4)^6). We also have a(9) = (a(1) + a(3))*7^49.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
- B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
- L. Bankoff and J. Garfunkel, The Heptagonal Triangle, Math. Magazine, 46 (1973), 7-19.
- Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
- D. Y. Savio and E. R. Suryanarayan, Chebyshev polynomials and regular polygons, Amer. Math. Monthly, 100 (1993), 657-661.
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Index entries for linear recurrences with constant coefficients, signature (7, -14, 7).
-
I:=[7,21,70]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 01 2016
-
LinearRecurrence[{7,-14,7}, {7,21,70}, 50]
-
polsym(x^3 - 7*x^2 + 14*x - 7, 30) \\ (includes a(0)=3) Joerg Arndt, May 31 2017
-
x='x+O('x^30); Vec((7-28*x+21*x^2)/(1-7*x+14*x^2-7*x^3)) \\ G. C. Greubel, Apr 23 2018
Original entry on oeis.org
1, -8, 20, -16, 2, 0, 0, 0, -1, -8, -44, -208, -910, -3808, -15504, -62016, -245157, -961400, -3749460, -14567280, -56448210, -218349120, -843621600, -3257112960, -12570420330, -48507033744, -187187399448, -722477682080, -2789279908316, -10772391370048
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
-
CoefficientList[Series[(1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3) *Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
-
my(x='x+O('x^30)); Vec((1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2 -4*x^3)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
-
((1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3)*sqrt(1-4*x))/2 ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019
Original entry on oeis.org
1, -6, 9, -2, 0, 0, -1, -6, -27, -110, -429, -1638, -6188, -23256, -87210, -326876, -1225785, -4601610, -17298645, -65132550, -245642760, -927983760, -3511574910, -13309856820, -50528160150, -192113383644, -731508653106, -2789279908316, -10649977831752, -40715807302800
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-6*x+9*x^2-2*x^3 +(1-4*x+3*x^2)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
-
CoefficientList[Series[(1-6*x+9*x^2-2*x^3 +(1-4*x+3*x^2)*Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
-
my(x='x+O('x^30)); Vec((1-6*x+9*x^2-2*x^3 +(1-4*x+3*x^2) *sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
-
((1-6*x+9*x^2-2*x^3 +(1-4*x+3*x^2)*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019
Showing 1-4 of 4 results.
Comments