A115231 Primes p which cannot be written in the form 2^i + q^j where i >= 0, j >= 1, q = odd prime.
2, 3, 149, 331, 373, 509, 701, 757, 809, 877, 907, 997, 1019, 1087, 1259, 1549, 1597, 1619, 1657, 1759, 1777, 1783, 1867, 1973, 2293, 2377, 2503, 2579, 2683, 2789, 2843, 2879, 2909, 2999, 3119, 3163, 3181, 3187, 3299, 3343, 3433, 3539, 3643, 3697, 3739, 3779
Offset: 1
Keywords
Examples
A000040(35) = 149 = 2^7+3*7 = 2^6+5*17 = 2^5+3*3*13 = 2^4+7*19 = 2^3+3*47 = 2^2+5*29 = 2^1+3*7*7 = 2^0+2*2*37, therefore 149 is a term (A115230(35)=0).
Links
- David A. Corneth, Table of n, a(n) for n = 1..11532 (terms <= 10^6)
Programs
-
Mathematica
maxp = 3779; Complement[pp = Prime[Range[PrimePi[maxp]]], Union[Sort[Reap[Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], Sow[p]], {i, 0, Log[2, maxp]//Ceiling}, {j, 1, Log[3, maxp]//Ceiling}, {q, Rest[pp]} ]][[2, 1]]]]] (* Jean-François Alcover, Aug 03 2018 *)
-
PARI
upto(n) = {my(pr = primes(primepi(n)), found = List(), s); for(i = 0, logint(n, 2), s = 2^i; forprime(q = 3, n - 2^i, for(j = 1, logint(n - 2^i, q), listput(found, s + q^j)))); listsort(found, 1); setminus(Set(pr), Set(found))} \\ David A. Corneth, Aug 03 2018
Extensions
Edited by N. J. A. Sloane, Apr 30 2010
2, 3 inserted by David A. Corneth, Aug 03 2018
Comments