cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A095842 Prime powers having no partition into two prime powers.

Original entry on oeis.org

1, 149, 331, 373, 509, 701, 757, 809, 877, 907, 997, 1019, 1087, 1259, 1549, 1597, 1619, 1657, 1759, 1777, 1783, 1867, 1973, 2293, 2377, 2503, 2579, 2683, 2789, 2843, 2879, 2909, 2999, 3119, 3163, 3181, 3187, 3299, 3343, 3433, 3539, 3643
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2004

Keywords

Comments

A095840(A095874(a(n))) = 0.
A071330(a(n)) = 0.
Here, "prime powers" is used in the relaxed sense, including 1. The numbers 96721, 121801, 192721, 205379, 226981,... seem to be the smallest composite terms of this sequence, which establishes the difference with the subsequence A115231. - M. F. Hasler, Nov 20 2014

Crossrefs

Subsequence of A071331.

Programs

  • Haskell
    a095842 n = a095842_list !! (n-1)
    a095842_list = filter ((== 0) . a071330) a000961_list
    -- Reinhard Zumkeller, Jan 11 2013
  • PARI
    isprimepower(n)=ispower(n,,&n);isprime(n)||n==1;
    isA095842(n)=if(!isprimepower(n),return(0));forprime(p=2,n\2,if(isprimepower(n-p),return(0)));forprime(p=2,sqrtint(n\2),for(e=1,log(n\2)\log(p),if(isprimepower(n-p^e),return(0))));!isprimepower(n-1)
    \\ Charles R Greathouse IV, Jul 06 2011
    

A115230 Let p = prime(n); a(n) = number of ways to write p = 2^i + q^j where i >= 0, j >= 1, q = odd prime.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 4, 3, 2, 2, 2, 2, 2, 4, 1, 3, 3, 4, 0, 2, 3, 1, 3, 3, 1, 4, 1, 1, 2, 4, 2, 1, 3, 3, 2, 1, 3, 1, 3, 2, 1, 3, 2, 2, 3, 4, 2, 1, 2, 2, 0, 1, 3, 2, 4, 2, 2, 0, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 3, 0, 2, 3, 2, 1, 1, 3, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 17 2006

Keywords

Examples

			n=25: A000040(25) = 97 = 2^6 + 3*11 = 2^5 + 5*13 = 2^4 + 3^4 = 2^3 + 89^1 = 2^2 + 3*31 = 2^1 + 5*19 = 2^0 + 3*2^5, therefore a(25) = #{[16+81], [8+89]} = 2.
		

Crossrefs

Programs

  • Maple
    From Reinhard Zumkeller, Apr 30 2010: (Start)
    A000035 := proc(n) n mod 2 ; end proc:
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A036987 := proc(n) A000108(n) mod 2 ; end proc:
    A010055 := proc(n) if n = 1 then 1; else numtheory[factorset](n) ; if nops(%) = 1 then 1; else 0; end if; end if: end proc:
    A115230 := proc(n) p := ithprime(n) ; add(A036987(k-1)*A000035(p-k)*A010055(p-k), k=1..p-1) ; end proc: seq(A115230(n),n=1..40) ; # R. J. Mathar, Apr 30 2010 (End)
  • Mathematica
    f[p_] := Length@ Table[q = p - 2^exp; If[ PrimeNu@ q == 1, {q}, Sequence @@ {}], {exp, 0, Floor@ Log2@ p}]; Table[ f[ Prime[ n]], {n, 105}] (* Robert G. Wilson v, Oct 05 2014 *)

Formula

a(n) = Sum_{k=1..prime(n)-1} A036987(k-1)*A000035(p-k)*A010055(p-k). - Reinhard Zumkeller, Apr 29 2010

Extensions

Recomputed by Charles R Greathouse IV, Ray Chandler, R. J. Mathar, and Reinhard Zumkeller, Apr 29 2010; thanks to Charles R Greathouse IV, who pointed out that there were many errors in entries of A115230-A115233.
Edited by N. J. A. Sloane, Apr 30 2010
Formula corrected (thanks to R. J. Mathar, who found an error in it) by Reinhard Zumkeller, Apr 30 2010

A115233 Primes p which have a unique representation as p = 2^i + q^j where i >= 0, j >= 1, q = odd prime.

Original entry on oeis.org

5, 127, 163, 179, 191, 193, 223, 239, 251, 269, 311, 337, 389, 419, 431, 457, 491, 547, 557, 569, 599, 613, 653, 659, 673, 683, 719, 739, 787, 821, 839, 853, 883, 911, 929, 953, 967, 977, 1117, 1123, 1201, 1229, 1249, 1283, 1289, 1297, 1303, 1327, 1381, 1409, 1423, 1439, 1451, 1471, 1481, 1499
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 17 2006

Keywords

Examples

			5 = 2+3 belongs to the sequence, but 23 = 2^2+19^1 = 2^4+7^1 does not.
		

Crossrefs

Subsequence of A115232. Cf. A115230, A115231.

Programs

  • Mathematica
    maxp = 1500; Clear[cnt]; cnt[_] = 0;
    pp = Prime[Range[PrimePi[maxp]]];
    Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], cnt[p] = cnt[p] + 1], {i, 0, Log[2, maxp] // Ceiling}, {j, 1, Log[3, maxp] // Ceiling}, {q, Rest[pp]}
    ];
    Select[pp, cnt[#] == 1&] (* Jean-François Alcover, Aug 04 2018 *)

Extensions

Recomputed (based on recomputation of A115230) by R. J. Mathar and Reinhard Zumkeller, Apr 29 2010.
Edited by N. J. A. Sloane, Apr 30 2010
Data corrected by Jean-François Alcover, Aug 04 2018

A115232 Primes p which can be written in the form 2^i + q^j where i >= 0, j >= 1, q = odd prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 17 2006

Keywords

Comments

a(n)=A000040(n+2) for n <= 32, but A000040(35)=149 is a term of A115231;
A115233 is a subsequence; the union with A115231 gives all primes (A000040);
A006512 and A053703 are subsequences.

Crossrefs

Programs

  • Mathematica
    maxp = 281;
    Union[Sort[Reap[Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], Sow[p]], {i, 0, Log[2, maxp]//Ceiling}, {j, 1, Log[3, maxp]//Ceiling}, {q, Prime[Range[2, PrimePi[maxp]]]}]][[2, 1]]]] (* Jean-François Alcover, Aug 03 2018 *)

Extensions

Recomputed (based on recomputation of A115230) by R. J. Mathar and Reinhard Zumkeller, Apr 29 2010
Edited by N. J. A. Sloane, Apr 30 2010
Terms a(1)=2 and a(2)=3 removed from Data by Jean-François Alcover, Aug 03 2018

A282533 Primes that are the sum of two proper prime powers (A246547) in more than one way.

Original entry on oeis.org

41, 89, 113, 137, 593, 857, 2213
Offset: 1

Views

Author

Altug Alkan, Feb 17 2017

Keywords

Comments

Primes of the form 2^k + p^e in more than one way where p is an odd prime (e > 1, k > 1).
Prime terms in A225103.
29 = 2^4 + 5^2 = 2 + 3^3 is a border case not included in this sequence - Olivier Gérard, Feb 25 2019
a(8) > 10^8 if it exists. - Robert Israel, Feb 17 2017
a(8) > 10^18 if it exists. - Charles R Greathouse IV, Feb 19 2017

Examples

			41 = 2^4 + 5^2 = 2^5 + 3^2.
89 = 2^3 + 3^4 = 2^6 + 5^2.
113 = 2^5 + 3^4 = 2^6 + 7^2.
137 = 2^7 + 3^2 = 2^4 + 11^2.
593 = 2^9 + 3^4 = 2^6 + 23^2.
857 = 2^7 + 3^6 = 2^4 + 29^2.
2213 = 2^4 + 13^3 = 2^2 + 47^2.
		

Crossrefs

Cf. A115231 (prime numbers which cannot be written as 2^a + p^b, b>=0)

Programs

  • MATLAB
    N = 10^8; % to get all terms <= N
    C = sparse(1,N);
    for p = primes(sqrt(N))
      C(p .^ [2:floor(log(N)/log(p))]) = 1;
    end
    R = zeros(1,N);
    for k = 2: floor(log2(N))
      R((2^k+1):N) = R((2^k+1):N) + C(1:(N-2^k));
    end
    P = primes(N);
    P(R(P) > 1.5) % Robert Israel, Feb 17 2017
    
  • Maple
    N:= 10^6: # to get all terms <= N
    B:= Vector(N):
    C:= Vector(N):
    for k from 2 to ilog2(N) do B[2^k]:= 1 od:
    p:= 2:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      for k from 2 to floor(log[p](N)) do C[p^k]:= 1 od:
    od:
    R:= SignalProcessing:-Convolution(B,C):
    select(t -> isprime(t) and R[t-1] > 1.5, [seq(i,i=3..N,2)]); # Robert Israel, Feb 17 2017
  • Mathematica
    Select[Prime@ Range[10^3], Function[n, Count[Transpose@{n - #, #}, w_ /; Times @@ Boole@ Map[And[PrimePowerQ@ #, ! PrimeQ@ #] &, w] > 0] >= 2 &@ Range[4, Floor[n/2]]]] (* or *)
    With[{n = 10^8}, Keys@ Select[#, Length@ # > 1 &] &@ GroupBy[#, First] &@ SortBy[Transpose@ {Map[Total, #], #}, First] &@ Select[Union@ Map[Sort, Tuples[#, 2]], PrimeQ@ Total@ # &] &@ Flatten@ Map[#^Range[2, Log[#, Prime@ n]] &, Array[Prime@ # &, Floor@ Sqrt@ n]]] (* Michael De Vlieger, Feb 19 2017, latter program Version 10 *)
  • PARI
    is(n) = if(!ispseudoprime(n), return(0), my(x=n-1, y=1, i=0); while(y < x, if(isprimepower(x) > 1 && isprimepower(y) > 1, if(i==0, i++, return(1))); y++; x--)); 0 \\ Felix Fröhlich, Feb 18 2017
    
  • PARI
    has(p)=my(t,q); p>40 && sum(k=2,logint(p-9,2), t=2^k; sum(e=2,logint(p-t,3), ispower(p-t,e,&q) && isprime(q)))>1
    list(lim)=my(v=List(),t,q); lim\=1; if(lim<9,lim=9); for(k=2,logint(lim-9,2), t=2^k; for(e=2,logint(lim-t,3), forprime(p=3,sqrtnint(lim-t,e), q=t+p^e; if(isprime(q) && has(q), listput(v,q))))); Set(v) \\ Charles R Greathouse IV, Feb 18 2017
Showing 1-5 of 5 results.