cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A095840 Number of ways to write the n-th prime power as sum of two prime powers.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 2, 3, 4, 3, 3, 7, 2, 3, 3, 2, 3, 2, 2, 3, 7, 2, 2, 3, 2, 4, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 1, 11, 3, 3, 4, 0, 2, 3, 1, 3, 3, 3, 1, 4, 1, 1, 2, 4, 2, 1, 3, 3, 2, 1, 3, 5, 1, 12, 3, 2, 1, 3, 2, 2, 3, 2, 4, 2, 1, 2, 2, 0, 1, 1, 3, 2, 4, 2, 3, 2, 0, 2, 3, 1, 2, 2, 2, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2004

Keywords

Comments

a(n) = A071330(A000961(n)).
See A095842 and A095841 for prime powers having no more than one partition into two prime powers.

Examples

			A000961(8) = 3^2 = 9 = 1+8 = 2+7 = 4+5, therefore a(8)=3.
		

Programs

A115231 Primes p which cannot be written in the form 2^i + q^j where i >= 0, j >= 1, q = odd prime.

Original entry on oeis.org

2, 3, 149, 331, 373, 509, 701, 757, 809, 877, 907, 997, 1019, 1087, 1259, 1549, 1597, 1619, 1657, 1759, 1777, 1783, 1867, 1973, 2293, 2377, 2503, 2579, 2683, 2789, 2843, 2879, 2909, 2999, 3119, 3163, 3181, 3187, 3299, 3343, 3433, 3539, 3643, 3697, 3739, 3779
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 17 2006

Keywords

Comments

Union with A115232 gives all primes (A000040).
All terms > 3 are in A095842. - M. F. Hasler, Nov 20 2014

Examples

			A000040(35) = 149 = 2^7+3*7 = 2^6+5*17 = 2^5+3*3*13 =
2^4+7*19 = 2^3+3*47 = 2^2+5*29 = 2^1+3*7*7 = 2^0+2*2*37, therefore 149 is a term (A115230(35)=0).
		

Crossrefs

Programs

  • Mathematica
    maxp = 3779; Complement[pp = Prime[Range[PrimePi[maxp]]], Union[Sort[Reap[Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], Sow[p]], {i, 0, Log[2, maxp]//Ceiling}, {j, 1, Log[3, maxp]//Ceiling}, {q, Rest[pp]} ]][[2, 1]]]]] (* Jean-François Alcover, Aug 03 2018 *)
  • PARI
    upto(n) = {my(pr = primes(primepi(n)), found = List(), s); for(i = 0, logint(n, 2), s = 2^i; forprime(q = 3, n - 2^i, for(j = 1, logint(n - 2^i, q),
    listput(found, s + q^j)))); listsort(found, 1); setminus(Set(pr), Set(found))} \\ David A. Corneth, Aug 03 2018

Extensions

Recomputed (based on recomputation of A115230) by R. J. Mathar and Reinhard Zumkeller, Apr 29 2010.
Edited by N. J. A. Sloane, Apr 30 2010
2, 3 inserted by David A. Corneth, Aug 03 2018

A095841 Prime powers having exactly one partition into two prime powers.

Original entry on oeis.org

2, 3, 127, 163, 179, 191, 193, 223, 239, 251, 269, 311, 337, 343, 389, 419, 431, 457, 491, 547, 557, 569, 599, 613, 653, 659, 673, 683, 719, 739, 787, 821, 839, 853, 883, 911, 929, 953, 967, 977, 1117, 1123, 1201, 1229, 1249, 1283, 1289, 1297, 1303, 1327, 1381, 1409, 1423, 1439, 1451, 1471, 1481, 1499, 1607, 1663, 1681
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2004

Keywords

Comments

A095840(A095874(a(n))) = 1.
A071330(a(n)) = 1.

Crossrefs

Intersection of A208247 and A000961.

Programs

  • Haskell
    a095841 n = a095841_list !! (n-1)
    a095841_list = filter ((== 1) . a071330) a000961_list
    -- Reinhard Zumkeller, Jan 11 2013
    
  • Maple
    N:= 10^4: # to get all terms <= N
    primepows:= {1,seq(seq(p^n, n=1..floor(log[p](N))),
        p=select(isprime,[2,seq(2*k+1,k=1..(N-1)/2)]))}:
    npp:= nops(primepows):
    B:= Vector(N,datatype=integer[4]):
    for n from 1 to npp do for m from n to npp do
       j:= primepows[n]+primepows[m];
       if j <= N then B[j]:= B[j]+1 fi;
    od od:
    select(t -> B[t] = 1, primepows); # Robert Israel, Nov 21 2014
  • Mathematica
    max = 2000; ppQ[n_] := n == 1 || PrimePowerQ[n]; pp = Select[Range[max], ppQ]; lp = Length[pp]; Table[pp[[i]] + pp[[j]], {i, 1, lp}, {j, i, lp}] // Flatten // Select[#, ppQ[#] && # <= max&]& // Sort // Split // Select[#, Length[#] == 1&]& // Flatten (* Jean-François Alcover, Mar 04 2019 *)
  • PARI
    is(n)=if(n<127,return(n==2||n==3)); isprimepower(n) && sum(i=2,n\2,isprimepower(i)&&isprimepower(n-i))==1 \\ naive; Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    is(n)=if(!isprimepower(n), return(0)); my(s); forprime(p=2, n\2, if(isprimepower(n-p) && s++>1, return(0))); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e) && s++>1, return(0)))); s+(!!isprimepower(n-1))==1 || n==2 \\ faster; Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    has(n)=my(s); forprime(p=2, n\2, if(isprimepower(n-p) && s++>1, return(0))); for(e=2, log(n)\log(2), forprime(p=2, sqrtnint(n\2, e), if(isprimepower(n-p^e) && s++>1, return(0)))); s+(!!isprimepower(n-1))==1
    list(lim)=my(v=List([2])); forprime(p=2,lim,if(has(p), listput(v,p))); for(e=2,log(lim)\log(2), forprime(p=2,lim^(1/e), if(has(p^e), listput(v,p^e)))); Set(v) \\ Charles R Greathouse IV, Nov 21 2014

A248412 Smallest prime p such that p - 2^e is also prime power (A053810) in exactly n cases for nonnegative integers e.

Original entry on oeis.org

149, 2, 5, 11, 83, 829, 3331, 32941, 176417, 854929, 2233531, 12699571, 47924959, 763597201
Offset: 0

Views

Author

Robert G. Wilson v, Oct 06 2014

Keywords

Comments

first case when A115230 equals n.
0: 149, 331, 373, 509, 701, 757, 809, 877, 907, 997, 1019, ...;
1: 2, 3, 127, 163, 179, 191, 193, 223, 239, 251, 269, 311, ...;
2: 5, 7, 23, 37, 47, 53, 59, 67, 71, 79, 97, 101, 103, ...;
3: 11, 13, 17, 19, 29, 31, 41, 43, 61, 73, 89, 131, 137, ...;
4: 83, 113, 139, 181, 199, 293, 353, 571, 593, 601, 619, ...;
5: 829, 1217, 1487, 2131, 2341, 2551, 2971, 4051, 4261, ...;
6: 3331, 12109, 14551, 17393, 18233, 22279, 22307, 22741, ...;
7: 32941, 34369, 44029, 49433, 53633, 67189, 95717, 99833, ...;
8: 176417, 304771, 314723, 314779, 349667, 414707, 451937, ...;
9: 854929, 1297651, 1328927, 1784723, 2164433, 2488909, ...;
10: 2233531, 6026089, 7475389, 7623229, 9644911, 10019551, ...;
11: 12699571, 18464123, 52849879, 78127339, 79303579, 84397463, ...;
12: 47924959, 153309649, 204797059, 248685923, 273865219, ...;
13: 763597201, ...;
...

Crossrefs

Cf. A115230, A244917, zeroth row A095842, first row A095841.

Programs

  • Mathematica
    f[p_] := Length@ Table[q = p - 2^exp; If[ PrimeNu@ q == 1, {q}, Sequence @@ {}], {exp, 0, Floor@ Log2@ p}]; t = Table[0, {20}]; p = 2; While[p < 1000000000, a = f[p] +1; If[a < 101 && t[[a]] == 0, t[[a]] == p; Print[{a -1, p}]]; p = NextPrime@ p]; t

Formula

a(n) <= A244917(n) for n>0.
Showing 1-4 of 4 results.