cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115252 Decimal expansion of -(Pi*log((sqrt(2*Pi)*Gamma(3/4))/Gamma(1/4)))/2.

Original entry on oeis.org

2, 6, 0, 4, 4, 2, 8, 0, 6, 3, 0, 0, 9, 8, 8, 4, 4, 5, 5, 4, 0, 0, 9, 3, 8, 6, 8, 7, 8, 9, 7, 2, 7, 2, 1, 9, 5, 3, 1, 8, 1, 9, 1, 7, 7, 7, 2, 3, 1, 4, 2, 6, 7, 4, 9, 8, 7, 6, 8, 7, 7, 9, 2, 1, 0, 5, 7, 7, 1, 6, 0, 3, 8, 1, 4, 7, 3, 1, 7, 3, 9, 2, 6, 9, 8, 9, 3, 3, 2, 0, 8, 0, 4, 0, 0, 9, 1, 4, 9, 8, 1, 1, 7, 1, 3
Offset: 0

Views

Author

Eric W. Weisstein, Jan 17 2006

Keywords

Comments

This sequence (its negated version) is also the decimal expansion of the first Malmsten integral int_{x=1..infinity} log(log(x))/(1 + x^2) dx = int_{x=0..1} log(log(1/x))/(1 + x^2) dx = int_{x=0..infinity} 0.5*log(x)/cosh(x) dx = int_{x=Pi/4..Pi/2} log(log(tan(x))) dx = (1/2)*Pi*log(2) + (3/4)*Pi*log(Pi) - Pi*log(Gamma(1/4)). - Iaroslav V. Blagouchine, Mar 29 2015

Examples

			0.26044280630098844554009386878972721953181917772314...
		

Crossrefs

Cf. A256127 (second Malmsten integral), A256128 (third Malmsten integral), A256129 (fourth Malmsten integral), A068466 (Gamma(1/4)), A256166 (log(Gamma(1/4))), A002162 (log 2), A053510 (log Pi).

Programs

  • Mathematica
    RealDigits[-Pi/2*Log[Sqrt[2 Pi] Gamma[3/4]/Gamma[1/4]], 10, 111][[1]] (* Robert G. Wilson v, Dec 06 2014 *)
  • PARI
    (-Pi*log((sqrt(2*Pi)*gamma(3/4))/gamma(1/4)))/2 \\ Michel Marcus, Dec 06 2014

Formula

Equals integral_[0..1] log(1/log(1/x))/(1+x^2) dx. - Jean-François Alcover, Jan 28 2015