A115252 Decimal expansion of -(Pi*log((sqrt(2*Pi)*Gamma(3/4))/Gamma(1/4)))/2.
2, 6, 0, 4, 4, 2, 8, 0, 6, 3, 0, 0, 9, 8, 8, 4, 4, 5, 5, 4, 0, 0, 9, 3, 8, 6, 8, 7, 8, 9, 7, 2, 7, 2, 1, 9, 5, 3, 1, 8, 1, 9, 1, 7, 7, 7, 2, 3, 1, 4, 2, 6, 7, 4, 9, 8, 7, 6, 8, 7, 7, 9, 2, 1, 0, 5, 7, 7, 1, 6, 0, 3, 8, 1, 4, 7, 3, 1, 7, 3, 9, 2, 6, 9, 8, 9, 3, 3, 2, 0, 8, 0, 4, 0, 0, 9, 1, 4, 9, 8, 1, 1, 7, 1, 3
Offset: 0
Examples
0.26044280630098844554009386878972721953181917772314...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- I. V. Blagouchine, Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal, Volume 35, Issue 1, pp. 21-110, 2014, DOI: 10.1007/s11139-013-9528-5. PDF file
- Eric Weisstein's World of Mathematics, Vardi's Integral
Crossrefs
Programs
-
Mathematica
RealDigits[-Pi/2*Log[Sqrt[2 Pi] Gamma[3/4]/Gamma[1/4]], 10, 111][[1]] (* Robert G. Wilson v, Dec 06 2014 *)
-
PARI
(-Pi*log((sqrt(2*Pi)*gamma(3/4))/gamma(1/4)))/2 \\ Michel Marcus, Dec 06 2014
Formula
Equals integral_[0..1] log(1/log(1/x))/(1+x^2) dx. - Jean-François Alcover, Jan 28 2015
Comments