cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115293 Row sums of correlation triangle for (1+x)^3/(1-x).

Original entry on oeis.org

1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, 1312, 1616, 1952, 2320, 2720, 3152, 3616, 4112, 4640, 5200, 5792, 6416, 7072, 7760, 8480, 9232, 10016, 10832, 11680, 12560, 13472, 14416, 15392, 16400, 17440, 18512, 19616, 20752, 21920, 23120, 24352
Offset: 0

Views

Author

Paul Barry, Jan 19 2006

Keywords

Comments

Row sums of number triangle A115292.
If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-2) is the number of 7-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007

Crossrefs

Programs

  • Maple
    seq(add(binomial(5,n-k)*binomial(k+2,k), k = 0..n), n = 0..40); # Peter Bala, Sep 26 2021
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,8,31,80,160,272},50] (* Harvey P. Dale, Dec 03 2018 *)
  • PARI
    a(n) = sum(k = 0, n, binomial(5,n-k)*binomial(k+2,k)); \\ Michel Marcus, Oct 01 2021

Formula

G.f.: A(x) = (1+x)^5/(1-x)^3.
a(n) = Sum_{k = 0..n} Sum_{j = 0..n} [j<=k]*A115291(k-j)*[j<=n-k]*A115291(n-k-j).
From Peter Bala, Sep 26 2021: (Start)
a(n) = Sum_{k = 0..n} binomial(5,n-k)*binomial(k+2,k).
A262732(n) = [x^n] A(x)^n. (End)