A115339 a(2n-1)=F(n+1), a(2n)=L(n), where F(n) and L(n) are the Fibonacci and the Lucas sequences.
1, 1, 2, 3, 3, 4, 5, 7, 8, 11, 13, 18, 21, 29, 34, 47, 55, 76, 89, 123, 144, 199, 233, 322, 377, 521, 610, 843, 987, 1364, 1597, 2207, 2584, 3571, 4181, 5778, 6765, 9349, 10946, 15127, 17711, 24476, 28657, 39603, 46368, 64079, 75025, 103682, 121393, 167761
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Fibonacci Number
- Eric Weisstein's World of Mathematics, Lucas Number.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
Programs
-
Haskell
a115339 n = a115339_list !! (n-1) a115339_list = [1, 1, 2, 3] ++ zipWith (+) a115339_list (drop 2 a115339_list) -- Reinhard Zumkeller, Aug 03 2013
-
Mathematica
f[n_] := If[OddQ@n, Fibonacci[(n + 3)/2], Fibonacci[n/2 - 1] + Fibonacci[n/2 + 1]]; Array[f, 50] (* Robert G. Wilson v, Apr 29 2006 *)
-
PARI
x='x+O('x^50); Vec(x*(-1-x-x^2-2*x^3)/(-1+x^2+x^4)) \\ G. C. Greubel, Apr 27 2017
Formula
a(n+2) = a(n) + a(n-2).
G.f.: x*( -1-x-x^2-2*x^3 ) / ( -1+x^2+x^4 ). - R. J. Mathar, Mar 08 2011
Extensions
More terms from Robert G. Wilson v, Apr 29 2006
Comments