cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115339 a(2n-1)=F(n+1), a(2n)=L(n), where F(n) and L(n) are the Fibonacci and the Lucas sequences.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 7, 8, 11, 13, 18, 21, 29, 34, 47, 55, 76, 89, 123, 144, 199, 233, 322, 377, 521, 610, 843, 987, 1364, 1597, 2207, 2584, 3571, 4181, 5778, 6765, 9349, 10946, 15127, 17711, 24476, 28657, 39603, 46368, 64079, 75025, 103682, 121393, 167761
Offset: 1

Views

Author

Giuseppe Coppoletta, Mar 06 2006

Keywords

Comments

Alternate Fibonacci and Lucas sequence respecting their natural order.
See A116470 for an essentially identical sequence.
The ratio a(n+1)/a(n) increasingly approximates two constants: (5-sqrt(5))/2 (A094874) and (5+3*sqrt(5))/10 (A176015) according to whether n is odd or even. - Davide Rotondo, Oct 27 2024

Crossrefs

Programs

  • Haskell
    a115339 n = a115339_list !! (n-1)
    a115339_list = [1, 1, 2, 3] ++
                   zipWith (+) a115339_list (drop 2 a115339_list)
    -- Reinhard Zumkeller, Aug 03 2013
    
  • Mathematica
    f[n_] := If[OddQ@n, Fibonacci[(n + 3)/2], Fibonacci[n/2 - 1] + Fibonacci[n/2 + 1]]; Array[f, 50] (* Robert G. Wilson v, Apr 29 2006 *)
  • PARI
    x='x+O('x^50); Vec(x*(-1-x-x^2-2*x^3)/(-1+x^2+x^4)) \\ G. C. Greubel, Apr 27 2017

Formula

a(n+2) = a(n) + a(n-2).
G.f.: x*( -1-x-x^2-2*x^3 ) / ( -1+x^2+x^4 ). - R. J. Mathar, Mar 08 2011

Extensions

More terms from Robert G. Wilson v, Apr 29 2006