cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115341 a(n) = abs(A154879(n+1)).

Original entry on oeis.org

2, 4, 0, 8, 8, 24, 40, 88, 168, 344, 680, 1368, 2728, 5464, 10920, 21848, 43688, 87384, 174760, 349528, 699048, 1398104, 2796200, 5592408, 11184808, 22369624, 44739240, 89478488, 178956968, 357913944, 715827880, 1431655768, 2863311528
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2006

Keywords

Comments

General form: a(n)=2^n-a(n-1). - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
For n>=1, a(n) is a(n) is the number of generalized compositions of n+3 when there are i^2-2*i-1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010

Crossrefs

Programs

  • Magma
    [2] cat [(2^(n+1)-8*(-1)^n)/3: n in [1..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    g0[n_] = 2 - Sum[(-1)^(i + 1)/Sqrt[2]^(2*i), {i, 0, n}] f[x_] = ZTransform[g0[n], n, x] g[n_] = InverseZTransform[f[1/x], x, n] a0 = Table[Abs[g[n]], {n, 1, 25}]
    k=0;lst={k};Do[k=2^n-k;AppendTo[lst, k], {n, 3, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[If[n==0, 2, (2^(n+1)-8*(-1)^n)/3], {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=0,30, print1(if(n==0, 2, (2^(n+1)-8*(-1)^n)/3), ", ")) \\ G. C. Greubel, Dec 30 2017
    

Formula

a(n) = (2^(n+1)-8*(-1)^n)/3, n>0.
a(n) = a(n-1) + 2*a(n-2), n>2.
G.f.: 2+4*x*(1-x)/((1+x)*(1-2*x)).

Extensions

Edited by the Associate Editors of the OEIS, Aug 21 2009