A115341 a(n) = abs(A154879(n+1)).
2, 4, 0, 8, 8, 24, 40, 88, 168, 344, 680, 1368, 2728, 5464, 10920, 21848, 43688, 87384, 174760, 349528, 699048, 1398104, 2796200, 5592408, 11184808, 22369624, 44739240, 89478488, 178956968, 357913944, 715827880, 1431655768, 2863311528
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Crossrefs
Programs
-
Magma
[2] cat [(2^(n+1)-8*(-1)^n)/3: n in [1..30]]; // G. C. Greubel, Dec 30 2017
-
Mathematica
g0[n_] = 2 - Sum[(-1)^(i + 1)/Sqrt[2]^(2*i), {i, 0, n}] f[x_] = ZTransform[g0[n], n, x] g[n_] = InverseZTransform[f[1/x], x, n] a0 = Table[Abs[g[n]], {n, 1, 25}] k=0;lst={k};Do[k=2^n-k;AppendTo[lst, k], {n, 3, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *) Table[If[n==0, 2, (2^(n+1)-8*(-1)^n)/3], {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
-
PARI
for(n=0,30, print1(if(n==0, 2, (2^(n+1)-8*(-1)^n)/3), ", ")) \\ G. C. Greubel, Dec 30 2017
Formula
a(n) = (2^(n+1)-8*(-1)^n)/3, n>0.
a(n) = a(n-1) + 2*a(n-2), n>2.
G.f.: 2+4*x*(1-x)/((1+x)*(1-2*x)).
Extensions
Edited by the Associate Editors of the OEIS, Aug 21 2009
Comments