cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243156 G.f. satisfies: x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^3) such that A(0) = 1.

Original entry on oeis.org

1, 1, 3, 9, 28, 92, 319, 1154, 4302, 16382, 63391, 248499, 984867, 3940121, 15891386, 64545971, 263783729, 1083883910, 4475194635, 18557356409, 77251869363, 322723617687, 1352518263334, 5684939482522, 23959266771808, 101226312702475, 428650606083144, 1818991203750774, 7734098181837847
Offset: 0

Views

Author

Paul D. Hanna, May 31 2014

Keywords

Comments

Compare to A243157, the series reversion of x*(1 - x)/(1 - x - x^3).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 28*x^4 + 92*x^5 + 319*x^6 + 1154*x^7 + 4302*x^8 + 16382*x^9 + 63391*x^10 + ... where A(x) = x * (1 - A(x) - A(x)^3) / (1 - A(x)).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[x/InverseSeries[x*(1+InverseSeries[Series[x/(1 + 4*x + 3*x^2 + x^3),{x,0,20}],x]),x],x] (* Vaclav Kotesovec, May 31 2014 after Paul D. Hanna *)
  • PARI
    {a(n)=polcoeff(x/serreverse(x*(1+serreverse(x/(1 + 4*x + 3*x^2 + x^3 +x*O(x^n))))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=0^n+floor(((6^(2*n)*(6^(-n)+1)^3+6^n)/(6*(1+6^n)))^n-6^n*floor((((6^(2*n)*(6^(-n)+1)^3+6^n)/(36*(1+6^n)))^n)))/(n+0^n)}
    for(n=0, 50, print1(a(n), ", ")) \\ Tani Akinari, May 20 2018
    
  • PARI
    {a(n)=0^n+sum(k=1,n,binomial(n,k)*binomial(3*k-n,k-1))/(n+0^n)} \\ Tani Akinari, May 20 2018

Formula

G.f.: A(x) = x / Series_Reversion(x*(1 + Series_Reversion(x / (1 + 4*x + 3*x^2 + x^3)))).
G.f. satisfies: x = (1+x)*A(x) - A(x)^2 + x*A(x)^3 such that A(0) = 1.
a(n) ~ sqrt((s-1)*s/(3*r*s-1)) / (2*sqrt(Pi) * r^n * n^(3/2)), where r = 2/(3 + sqrt(13 + 16*sqrt(2))) = 0.22299351557517... and s = (1+sqrt(5+4*sqrt(2)))/2 = 2.1322418823119... . - Vaclav Kotesovec, May 31 2014
a(n) = floor(((6^(2*n)*(6^(-n)+1)^3+6^n)/(6*(1+6^n)))^n-6^n*floor((((6^(2*n)*(6^(-n)+1)^3+6^n)/(36*(1+6^n)))^n)))/n, for n>0. - Tani Akinari, May 20 2018
D-finite with recurrence n*(n+1)*a(n) -9*n*(n-1)*a(n-1) +6*(6*n^2 -22*n +17)*a(n-2) -27*(3*n-7) *(n-4)*a(n-3) +2*(14*n^2 -172*n +435)*a(n-4) +3*(53*n -192) *(n-5) *a(n-5) -341*(n-5)*(n-6) *a(n-6)=0. - R. J. Mathar, Jul 20 2023

A377705 G.f. A(x) satisfies A(x) = 1 + x/A(x)^2 * (1 - A(x) + A(x)^3).

Original entry on oeis.org

1, 1, 0, 2, -3, 12, -35, 121, -413, 1464, -5265, 19249, -71236, 266443, -1005511, 3824055, -14641264, 56389272, -218315173, 849170605, -3316817080, 13004273475, -51160638706, 201901154910, -799059730844, 3170706566751, -12611882813645, 50277271079611
Offset: 0

Views

Author

Seiichi Manyama, Dec 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, (-1)^k*binomial(n, k)*binomial(n-3*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} (-1)^k * binomial(n,k) * binomial(n-3*k,n-k-1) for n > 0.
Showing 1-2 of 2 results.