cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242244 Primes p such that both p^2 + 2 and p^2 - 2 are semiprimes.

Original entry on oeis.org

11, 17, 53, 73, 79, 83, 97, 251, 269, 281, 379, 389, 433, 461, 601, 631, 691, 739, 827, 929, 947, 983, 1033, 1087, 1187, 1303, 1423, 1483, 1531, 1637, 1709, 1847, 1879, 2447, 2473, 2683, 2833, 2843, 3301, 3463, 3557, 3719, 3727, 3779, 3833, 3907, 3931, 4157
Offset: 1

Views

Author

K. D. Bajpai, May 09 2014

Keywords

Comments

Primes p such that p^2 + 2 = 3q, where q is prime, and p^2 - 2 is semiprime.

Examples

			a(1) = 11 is prime: 11^2 + 2 = 123 = 3 * 41 which is semiprime: 11^2 - 2 = 119 = 7 * 17 which is also semiprime.
a(2) = 17 is prime: 17^2 + 2 = 291 = 3 * 97 which is semiprime: 17^2 - 2 = 287 = 7 * 41 which is also semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A242244:= proc()if isprime(x) and bigomega(x^2+2)=2 and bigomega(x^2-2)=2 then RETURN (x); fi; end: seq(A242244 (),x=1..5000);
  • Mathematica
    A242244 = {}; Do[p = Prime[n]; If[PrimeOmega[p^2 + 2] == 2 && PrimeOmega[p^2 - 2] == 2, AppendTo[A242244, p]], {n, 2000}]; A242244
    Select[Prime[Range[600]],PrimeOmega[#^2+{2,-2}]=={2,2}&] (* Harvey P. Dale, Apr 07 2018 *)
  • PARI
    is(n)=isprime(n) && isprime((n^2+2)\3) && bigomega(n^2-2)==2 \\ Charles R Greathouse IV, May 15 2014

A243365 Primes p such that both p^2 + 6 and p^2 - 6 are semiprime.

Original entry on oeis.org

101, 157, 173, 229, 233, 239, 347, 349, 353, 421, 439, 479, 521, 577, 619, 661, 719, 751, 761, 829, 881, 1019, 1061, 1117, 1129, 1153, 1277, 1289, 1321, 1447, 1453, 1489, 1523, 1579, 1721, 1733, 1801, 1811, 1823, 1831, 1861, 1871, 1873, 2027, 2099, 2221, 2239
Offset: 1

Views

Author

K. D. Bajpai, Jun 24 2014

Keywords

Examples

			101 is in the sequence because 101 is prime. 101^2 + 6 = 10207 = 59 * 173 which is semiprime. 101^2 - 6 = 10195 = 5 * 2039 which is semiprime.
157 is in the sequence because 157 is prime. 157^2 + 6 = 24655 = 5 * 4931 which is semiprime. 157^2 - 6 = 24643 = 19 * 1297 which is semiprime.
		

Crossrefs

Cf. A000040 (primes), A001358 (semiprimes).
Cf. A117328 (p+/-4 semiprime), A115395(p+/-6 semiprime), A242244 (p^2+/-2 semiprime).

Programs

  • Maple
    with(numtheory): A243365:= proc()local k; k:=ithprime(n); if bigomega(k^2+6)=2 and bigomega(k^2-6)=2 then RETURN (k); fi; end: seq(A243365 (),n=1..5000);
  • Mathematica
    A243365 = {}; k = Prime[n]; Do[If[PrimeOmega[k^2 + 6] == 2 && PrimeOmega[k^2 - 6] == 2, AppendTo[A243365, k]], {n, 1000}]; A243365
    Select[Prime[Range[400]],PrimeOmega[#^2+{6,-6}]=={2,2}&] (* Harvey P. Dale, Jul 08 2014 *)
  • PARI
    s=[]; forprime(p=2, 3000, if(bigomega(p^2+6)==2 && bigomega(p^2-6)==2, s=concat(s, p))); s \\ Colin Barker, Jun 25 2014
Showing 1-2 of 2 results.