cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115400 Number of n-colorings of the octahedral graph.

Original entry on oeis.org

0, 0, 0, 6, 96, 780, 4080, 15330, 45696, 115416, 257760, 523710, 987360, 1752036, 2957136, 4785690, 7472640, 11313840, 16675776, 24006006, 33844320, 46834620, 63737520, 85443666, 112987776, 147563400, 190538400, 243471150, 308127456
Offset: 0

Views

Author

Jonathan Vos Post, Aug 25 2008

Keywords

Comments

The octahedral graph is the dual of the cubical graph whose chromatic polynomial is evaluated in A140986.

Crossrefs

Cf. A140986.

Programs

  • Magma
    [n*(n-1)*(n-2)*(n^3 - 9*n^2 + 29*n - 32): n in [0..50]]; // Vincenzo Librandi, Feb 12 2012
    
  • Mathematica
    Table[n*(n-1)*(n-2)*(n^3-9*n^2+29*n-32),{n,0,50}] (* Vincenzo Librandi, Feb 12 2012 *)
  • Maxima
    A115400(n):=n*(n-1)*(n-2)*(n^3 - 9*n^2 + 29*n - 32)$
    makelist(A115400(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Formula

a(n) = n*(n-1)*(n-2)*(n^3 - 9*n^2 + 29*n - 32).
G.f.: 6*x^3*(1 + 9*x + 39*x^2 + 71*x^3)/(1-x)^7. - Colin Barker, Feb 12 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6. - Chai Wah Wu, Jan 19 2024