A115514 Triangle read by rows: row n >= 1 lists first n positive terms of A004526 (integers repeated) in decreasing order.
1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, 4, 3, 3, 2, 2, 1, 1, 4, 4, 3, 3, 2, 2, 1, 1, 5, 4, 4, 3, 3, 2, 2, 1, 1, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 1
Examples
Triangle begins as, for n >= 1, 1 <= k <= n, 1; 1, 1; 2, 1, 1; 2, 2, 1, 1; 3, 2, 2, 1, 1; 3, 3, 2, 2, 1, 1; 4, 3, 3, 2, 2, 1, 1; ...
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
[Floor((n-k+2)/2): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 14 2024
-
Maple
# Assuming offset 0: Even := n -> (1 + (-1)^n)/2: # Iverson's even. p := n -> add(add(Even(k)*x^j, j = 0..n-k), k = 0..n): for n from 0 to 9 do seq(coeff(p(n), x, k), k=0..n) od; # Peter Luschny, Jun 03 2021
-
Mathematica
Table[Floor[(n-k+2)/2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 14 2024 *)
-
SageMath
flatten([[(n-k+2)//2 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 14 2024
Formula
Sum_{k=1..n} T(n, k) = A002620(n+1) (row sums). - Gary W. Adamson, Oct 25 2007
T(n, k) = [x^k] p(n), where p(n) are partial Gaussian polynomials (A008967) defined by p(n) = Sum_{k=0..n} Sum_{j=0..n-k} even(k)*x^j, and even(k) = 1 if k is even and otherwise 0. We assume offset 0. - Peter Luschny, Jun 03 2021
T(n, k) = floor((n+2-k)/2). - Christian Barrientos, Jun 27 2022
From G. C. Greubel, Mar 14 2024: (Start)
T(n, k) = A128623(n, k)/n.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A142150(n+1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A008805(n-1).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = A002265(n+3). (End)
Extensions
Edited by N. J. A. Sloane, Mar 23 2008 and Dec 15 2017
Comments