cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115549 Numbers k such that the concatenation of k with 8*k gives a square.

Original entry on oeis.org

3, 12, 28, 63, 112, 278, 1112, 2778, 11112, 27778, 111112, 277778, 1111112, 2777778, 4938272, 7716050, 11111112, 12802888, 13151250, 13504288, 13862002, 14224392, 14591458, 14963200, 15339618, 15720712, 16106482, 16496928, 16892050, 17291848, 17696322, 18105472
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

If k = 10*R_m + 2, with m >= 1, then the concatenation of k with 8*k equals (30*R_m + 6)^2, so A047855 \ {1,2} is a subsequence. - Bernard Schott, Apr 09 2022
Numbers k such that A009470(k) is a square. - Michel Marcus, Apr 09 2022
The numbers 28, 278, 2778, ..., 2*10^k + 7*(10^k - 1)/9 + 1, ..., k >= 1, are terms, because the concatenation forms the squares 28224 = 168^2, 2782224 = 1668^2, 277822224 = 16668^2, ..., (10^m + 2*(10^m - 1)/3 + 2)^2, m >= 2, ... - Marius A. Burtea, Apr 10 2022

Examples

			3_24 = 18^2.
11112_88896 = 33336^2.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..20000000]|IsSquare(Seqint(Intseq(8*n) cat Intseq(n)))]; // Marius A. Burtea, Apr 10 2022
  • PARI
    isok(k) = issquare(eval(Str(k, 8*k))); \\ Michel Marcus, Apr 09 2022
    

Extensions

More terms from Marius A. Burtea, Apr 13 2022