cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115567 a(n) = C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 63, 126, 246, 465, 847, 1485, 2509, 4095, 6475, 9948, 14892, 21777, 31179, 43795, 60459, 82159, 110055, 145498, 190050, 245505, 313911, 397593, 499177, 621615, 768211, 942648, 1149016, 1391841, 1676115, 2007327, 2391495
Offset: 0

Views

Author

Jonathan Vos Post, Mar 12 2006

Keywords

Comments

a(n) = n + T(n) + Tet(n) + Ptop(n) + 5-Simplex(n) + 6-Simplex(n), where T(n) = n-th triangular number A000217(n), Tet(n) = n-th tetrahedral number A000292(n), Ptop(n) = n-th pentatope number A000332(n), 5-Simplex(n) = n-th 5-simplex number A000389(n), 6-Simplex(n) = n-th 6-simplex number A000579(n).
By analogy to A004006, A055795 and A057703, I presume that a(n) = Answer to the question: if you have a tall building and 6 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries?

Crossrefs

Programs

  • Magma
    [n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720: n in [0..30]]; // G. C. Greubel, Nov 25 2017
  • Maple
    seq(sum(binomial(n,k),k=1..6),n=0..36); # Zerinvary Lajos, Dec 13 2007
  • Mathematica
    Table[n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720, {n,0,30}] (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    for(n=0,30, print1(n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720, ", ")) \\ G. C. Greubel, Nov 25 2017
    
  • Sage
    [binomial(n,2)+binomial(n,4)+binomial(n,6) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009
    
  • Sage
    [binomial(n,1)+binomial(n,3)+binomial(n,5)+binomial(n,2)+binomial(n,4)+binomial(n,6) for n in range(0, 37)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).
a(n) = A000579(n) + A000389(n) + A000332(n) + A000292(n) + A000217(n) + n.
a(n) = A000579(n) + A057703(n).
G.f.: x*(1-x+x^2)*(1-3*x+3*x^2)/(1-x)^7. - Colin Barker, Mar 16 2012
From G. C. Greubel, Nov 25 2017: (Start)
a(n) = n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720.
E.g.f.: x*(720 + 360*x + 120*x^2 + 30*x^3 + 6*x^4 + x^5)*exp(x)/720. (End)