cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115593 Number of forests of rooted trees with total weight n, where a node at height k has weight 2^k (with root considered to be at height 0).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 17, 22, 29, 38, 50, 64, 82, 107, 136, 175, 224, 288, 363, 465, 587, 748, 942, 1196, 1503, 1902, 2385, 3004, 3765, 4729, 5911, 7406, 9246, 11549, 14395, 17941, 22326, 27767, 34501, 42821, 53134, 65828, 81546, 100871, 124783
Offset: 0

Views

Author

Keywords

Comments

The sequence b(2n)=0, b(2n+1)=a(n) is the number of trees of weight n.

Examples

			a(3) = 2; one forest with 3 single-node trees and one with a single two-node tree (root node has weight 1, other node has weight 2).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) local r; `if`(irem(n, 2, 'r')=0, 0, a(r)) end:
    a:= proc(n) option remember; `if`(n=0, 1,
           add(add(d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, May 16 2013
  • Mathematica
    b[n_] := b[n] = If[{q, r} = QuotientRemainder[n, 2]; r == 0, 0, a[q]]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 23 2015, after Alois P. Heinz *)
  • PARI
    {a(n)=my(A=1+x); for(i=1, n, A=exp(sum(m=1, n, subst(A,x,x^(2*m)+x*O(x^n))*x^m/m))); polcoeff(A,n)} /* Paul D. Hanna */

Formula

Euler transform of b(n), where b(2n+1) = a(n) and b(2n) = 0.
From Paul D. Hanna, Oct 26 2011: (Start)
G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^(2*n)) * x^n/n ).
G.f. satisfies: A(x)*A(-x) = A(x^2). (End)
Let b(n) = a(n-1) for n>=1, then sum(n>=1, b(n)*x^n ) = x / prod(n>=1, (1-x^(2*n-1))^b(n) ); compare to A000081, A004111, and A073075. - Joerg Arndt, Mar 04 2015
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k and d is odd} d * a(floor(d/2)) ) * a(n-k). - Seiichi Manyama, May 31 2023