cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115605 Expansion of -x^2*(2 + x - 2*x^2 - x^3 + 2*x^4) / ( (x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)*(x^2 + 4*x - 1)*(x^2 - x - 1) ).

Original entry on oeis.org

0, 0, 2, 7, 31, 128, 549, 2315, 9826, 41594, 176242, 746496, 3162334, 13395658, 56745250, 240376201, 1018250793, 4313378176, 18271765435, 77400436781, 327873517634, 1388894499108, 5883451527348, 24922700587008
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Crossrefs

Programs

  • Maple
    A000035 := proc(n)
            n mod 2 ;
    end proc:
    A061347 := proc(n)
            op((n mod 3)+1,[-2,1,1]) ;
    end proc:
    A001076 := proc(n)
            option remember;
            if n <=1 then
                    n;
            else
                    4*procname(n-1)+procname(n-2) ;
            end if;
    end proc:
    A039834 := proc(n)
            (-1)^(n+1)*combinat[fibonacci](n) ;
    end proc:
    A087204 := proc(n)
            op((n mod 6)+1,[2,1,-1,-2,-1,1]) ;
    end proc:
    A115605 := proc(n)
            -A000035(n+1)/6 +A061347(n+2)/12 + A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12 ;
    end proc: # R. J. Mathar, Dec 16 2011
  • Mathematica
    LinearRecurrence[{3,6,-3,-1,0,1,-3,-6,3,1},{0,0,2,7,31,128,549,2315,9826,41594},30] (* Harvey P. Dale, Dec 16 2011 *)
  • PARI
    concat([0,0],Vec((2+x-2*x^2-x^3+2*x^4)/((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)*(x^2+4*x-1)*(x^2-x-1))+O(x^99))) \\ Charles R Greathouse IV, Sep 27 2012

Formula

Lim_{n->infinity} a(n+1)/a(n) = phi^3 = A098317.
a(n) = -A000035(n+1)/6 +A061347(n+2)/12 +A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12. - R. J. Mathar, Dec 16 2011