A115632 Decimal expansion of asymptotic constant in Goebel's sequence A003504.
1, 0, 4, 7, 8, 3, 1, 4, 4, 7, 5, 7, 6, 4, 1, 1, 2, 2, 9, 5, 5, 9, 9, 0, 9, 4, 6, 2, 7, 4, 3, 1, 3, 7, 5, 5, 4, 5, 9, 0, 5, 8, 7, 6, 1, 2, 8, 6, 0, 2, 3, 3, 0, 9, 6, 9, 5, 1, 0, 4, 0, 6, 4, 8, 5, 3, 5, 3, 6, 0, 5, 9, 0, 4, 9, 7, 2, 6, 2, 3, 1, 7, 9, 7, 5, 1, 3, 0, 9, 7, 9, 0, 0, 0, 7, 0, 9, 9, 4, 7, 9, 5, 1, 1, 3
Offset: 1
Examples
1.04783144757641122955990946274313755459058761286023309695104064853536...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.10, p. 446.
Links
- Hibiki Gima, Toshiki Matsusaka, Taichi Miyazaki, and Shunta Yara, On integrality and asymptotic behavior of the (k,l)-Göbel sequences, arXiv:2402.09064 [math.NT], 2024. See p. 2.
- Eric Weisstein's World of Mathematics, Goebel's Sequence.
Crossrefs
Cf. A003504.
Programs
-
PARI
{a(n)=local(t=log(2)/2); for(k=2, 14, t+= (log(1+(k-1)/exp(2^(k-1)*t))-log(k))/2^k); t=exp(t-suminf(k=15, log(k)/2^k)); floor(t*10^(n-1))%10} /* Michael Somos, Apr 02 2006 */