A115713 A divide-and-conquer related triangle.
1, -1, 1, -4, 0, 1, 0, 0, -1, 1, 0, -4, 0, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, -4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins 1; -1, 1; -4, 0, 1; 0, 0, -1, 1; 0, -4, 0, 0, 1; 0, 0, 0, 0, -1, 1; 0, 0, -4, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 0, -4, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Maple
A115713 := proc(n,k) coeftayl( (1-x+x*y)/(1-x^2*y^2)-4*x^2/(1-x^2*y),x=0,n) ; coeftayl( %,y=0,k) ; end proc: # R. J. Mathar, Sep 07 2016
-
Mathematica
T[n_, k_]:= If[k==n, 1, If[k==n-1, -(1-(-1)^n)/2, If[n==2*k+2, -4, 0]]]; Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 23 2021 *)
-
Sage
def A115713(n,k): if (k==n): return 1 elif (k==n-1): return -(n%2) elif (n==2*k+2): return -4 else: return 0 flatten([[A115713(n,k) for k in (0..n)] for n in (0..18)]) # G. C. Greubel, Nov 23 2021
Formula
G.f.: (1-x+x*y)/(1-x^2*y^2) - 4*x^2/(1-x^2*y).
(1, x) - (x, x)/2 - (x, -x)/2 - 4*(x^2, x^2) expressed in the notation of stretched Riordan arrays.
Column k has g.f.: x^k - (x*(-x)^k + x^(k+1))/2 - 4*x^(2*k+2).
T(n, k) = if(n=k, 1, 0) OR if(n=2k+2, -4, 0) OR if(n=k+1, -(1+(-1)^k)/2, 0).
Sum_{k=0..n} T(n, k) = A115634(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A115714(n).