cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115717 A divide-and-conquer triangle related to A007583.

Original entry on oeis.org

1, 0, 1, 3, -1, 1, 0, 0, 0, 1, 0, 4, -1, -1, 1, 0, 0, 0, 0, 0, 1, 12, -4, 4, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 16, -4, -4, 4, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 48, -16, 16, 0, -4, -4, 4, 0, 0, 0, 0, 0, -1, -1, 1
Offset: 0

Views

Author

Paul Barry, Jan 29 2006

Keywords

Comments

Product of (1-x, x), which is A167374, and number triangle A115715.

Examples

			Triangle begins
   1;
   0,   1;
   3,  -1,  1;
   0,   0,  0,  1;
   0,   4, -1, -1,  1;
   0,   0,  0,  0,  0,  1;
  12,  -4,  4,  0, -1, -1,  1;
   0,   0,  0,  0,  0,  0,  0,  1;
   0,   0,  0,  4,  0,  0, -1, -1,  1;
   0,   0,  0,  0,  0,  0,  0,  0,  0,  1;
   0,  16, -4, -4,  4,  0,  0,  0, -1, -1,  1;
   0,   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
   0,   0,  0,  0,  0,  4,  0,  0,  0,  0, -1, -1,  1;
   0,   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
  48, -16, 16,  0, -4, -4,  4,  0,  0,  0,  0,  0, -1, -1,  1;
		

Crossrefs

Cf. A007583, A115715, A115716 (row sums), A167374.

Programs

  • Maple
    A115717 := proc(n,k)
        add( A167374(n,j)*A115715(j,k),j=k..n) ;
    end proc: # R. J. Mathar, Sep 07 2016
  • Mathematica
    A167374[n_, k_]:= If[k>n-2, (-1)^(n-k), 0];
    g[n_, k_]:= g[n, k]= If[k==n, 1, If[k==n-1, -Mod[n, 2], If[n==2*k+2, -4, 0]]]; (* g = A115713 *)
    f[n_, k_]:= f[n, k]= If[k==n, 1, -Sum[f[n,j]*g[j,k], {j,k+1,n}]]; (* f=A115715 *)
    A115717[n_, k_]:= A115717[n, k]= Sum[A167374[n,j]*f[j,k], {j,k,n}];
    Table[A115717[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 23 2021 *)
  • Sage
    @cached_function
    def A115717(n,k):
        def A167374(n, k):
            if (k>n-2): return (-1)^(n-k)
            else: return 0
        def A115713(n,k):
            if (k==n): return 1
            elif (k==n-1): return -(n%2)
            elif (n==2*k+2): return -4
            else: return 0
        def A115715(n,k):
            if (k==0): return 4^(floor(log(n+2, 2)) -1)
            elif (k==n): return 1
            elif (k==n-1): return (n%2)
            else: return (-1)*sum( A115715(n,j+k+1)*A115713(j+k+1,k) for j in (0..n-k-1) )
        return sum( A167374(n, j+k)*A115715(j+k, k) for j in (0..n-k) )
    flatten([[A115717(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 23 2021

Formula

Sum_{k=0..n} T(n, k) = A115716(n).
T(n ,k) = Sum_{j=k..n} A167374(n, j)*A115715(j, k). - R. J. Mathar, Sep 07 2016

A115715 A divide-and-conquer triangle.

Original entry on oeis.org

1, 1, 1, 4, 0, 1, 4, 0, 1, 1, 4, 4, 0, 0, 1, 4, 4, 0, 0, 1, 1, 16, 0, 4, 0, 0, 0, 1, 16, 0, 4, 0, 0, 0, 1, 1, 16, 0, 4, 4, 0, 0, 0, 0, 1, 16, 0, 4, 4, 0, 0, 0, 0, 1, 1, 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Jan 29 2006

Keywords

Examples

			Triangle begins
   1;
   1,  1;
   4,  0,  1;
   4,  0,  1,  1;
   4,  4,  0,  0,  1;
   4,  4,  0,  0,  1,  1;
  16,  0,  4,  0,  0,  0,  1;
  16,  0,  4,  0,  0,  0,  1,  1;
  16,  0,  4,  4,  0,  0,  0,  0,  1;
  16,  0,  4,  4,  0,  0,  0,  0,  1,  1;
  16, 16,  0,  0,  4,  0,  0,  0,  0,  0,  1;
  16, 16,  0,  0,  4,  0,  0,  0,  0,  0,  1,  1;
  16, 16,  0,  0,  4,  4,  0,  0,  0,  0,  0,  0,  1;
  16, 16,  0,  0,  4,  4,  0,  0,  0,  0,  0,  0,  1,  1;
  64,  0, 16,  0,  0,  0,  4,  0,  0,  0,  0,  0,  0,  0,  1;
  64,  0, 16,  0,  0,  0,  4,  0,  0,  0,  0,  0,  0,  0,  1,  1;
  64,  0, 16,  0,  0,  0,  4,  4,  0,  0,  0,  0,  0,  0,  0,  0,  1;
		

Crossrefs

Cf. A032925 (row sums), A115639 (first column), A115713 (inverse).

Programs

  • Maple
    A115715 := proc(n,k)
        option remember;
        if n = k then
            1;
        elif k > n then
            0;
        else
            -add(procname(n,l)*A115713(l,k),l=k+1..n) ;
        end if;
    end proc:
    seq(seq(A115715(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Sep 07 2016
  • Mathematica
    A115713[n_, k_]:= If[k==n, 1, If[k==n-1, ((-1)^n-1)/2, If[n==2*k+2, -4, 0]]];
    T[n_, k_]:= T[n, k]= If[k==n, 1, -Sum[T[n, j]*A115713[j, k], {j, k+1, n}]];
    Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 23 2021 *)
  • Sage
    @CachedFunction
    def A115713(n,k):
        if (k==n): return 1
        elif (k==n-1): return -(n%2)
        elif (n==2*k+2): return -4
        else: return 0
    def A115715(n,k):
        if (k==0): return 4^(floor(log(n+2, 2)) -1)
        elif (k==n): return 1
        elif (k==n-1): return (n%2)
        else: return (-1)*sum( A115715(n,j)*A115713(j,k) for j in (k+1..n) )
    flatten([[A115715(n,k) for k in (0..n)] for n in (0..18)]) # G. C. Greubel, Nov 23 2021

Formula

Sum_{=0..n} T(n, k) = A032925(n).
T(n, 0) = A115639(n).
T(n, k) = 1 if n = k, otherwise T(n, k) = (-1)*Sum_{j=k+1..n} T(n, j)*A115713(j, k). - R. J. Mathar, Sep 07 2016

A115714 Periodic {1,-1,-3,0,1,-5,1,0,-3,-1,1,-4}.

Original entry on oeis.org

1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4, 1, -1, -3, 0, 1, -5, 1, 0, -3, -1, 1, -4
Offset: 0

Views

Author

Paul Barry, Jan 29 2006

Keywords

Comments

Diagonal sums of number triangle A115713.

Crossrefs

Cf. A115713.

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,0,1,1,1}, {1,-1,-3,0,1,-5}, 80] (* G. C. Greubel, Nov 23 2021 *)
  • Sage
    def A115714_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-3*x^2+4*x^3+3*x^4+4*x^5)/(1+x+x^2-x^4-x^5-x^6) ).list()
    A115714_list(80) # G. C. Greubel, Nov 23 2021

Formula

G.f.: (1 - 3*x^2 + 4*x^3 + 3*x^4 + 4*x^5)/(1 + x + x^2 - x^4 - x^5 - x^6).
a(n) = Sum_{k=0..floor(n/2)} A115713(n-k, k).

A115718 Inverse of number triangle A115717; a divide-and-conquer related triangle.

Original entry on oeis.org

1, 0, 1, -3, 1, 1, 0, 0, 0, 1, -3, -3, 1, 1, 1, 0, 0, 0, 0, 0, 1, -3, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, -3, -3, -3, -3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 29 2006

Keywords

Comments

Product of A115713 and (1/(1-x), x).
Row sums are 1,1,-1,1,-3,1,-5,1,-7,1, ... with g.f. (1+x-3*x^2-x^3)/(1-x^2)^2.
Row sums of inverse are A115716.

Examples

			Triangle begins
   1;
   0,  1;
  -3,  1,  1;
   0,  0,  0,  1;
  -3, -3,  1,  1,  1;
   0,  0,  0,  0,  0,  1;
  -3, -3, -3,  1,  1,  1,  1;
   0,  0,  0,  0,  0,  0,  0,  1;
  -3, -3, -3, -3,  1,  1,  1,  1,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
  -3, -3, -3, -3, -3,  1,  1,  1,  1,  1,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
  -3, -3, -3, -3, -3, -3,  1,  1,  1,  1,  1,  1,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1;
  -3, -3, -3, -3, -3, -3, -3,  1,  1,  1,  1,  1,  1,  1,  1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[OddQ[n], If[kG. C. Greubel, Nov 29 2021 *)
  • Sage
    def A115718(n,k):
        if (n%2==0): return 0 if (kA115718(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 29 2021

Formula

From G. C. Greubel, Nov 29 2021: (Start)
T(2*n, k) = -3 if (k < n/2) otherwise 1.
T(2*n+1, k) = 0 if (k < n) otherwise 1.
Sum_{k=0..n} T(n, k) = (1/2)*(2 + (1 + (-1)^n)*n) = 1 + A237420(n). (End)
Showing 1-4 of 4 results.