cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A115773 Sequence A115772 in binary.

Original entry on oeis.org

0, 101, 1010, 1111, 10100, 10101, 11110, 11111, 101000, 101010, 101101, 101111, 111100, 111101, 111110, 111111, 1010000, 1010100, 1010101, 1011010, 1011110, 1011111, 1111000, 1111010, 1111100, 1111101, 1111110, 1111111, 10100000
Offset: 0

Views

Author

Antti Karttunen, Jan 30 2006

Keywords

Crossrefs

Cf. a(n) = A007088(A115772(n)).

A115872 Square array where row n gives all solutions k > 0 to the cross-domain congruence n*k = A048720(A065621(n),k), zero sequence (A000004) if no such solutions exist.

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 4, 3, 6, 1, 5, 4, 7, 2, 7, 6, 5, 12, 3, 14, 3, 7, 6, 14, 4, 15, 6, 7, 8, 7, 15, 5, 28, 7, 14, 1, 9, 8, 24, 6, 30, 12, 15, 2, 15, 10, 9, 28, 7, 31, 14, 28, 3, 30, 7, 11, 10, 30, 8, 56, 15, 30, 4, 31, 14, 3, 12, 11, 31, 9, 60, 24, 31, 5, 60, 15, 6, 3, 13, 12, 48, 10, 62, 28, 56, 6, 62, 28, 12, 6, 5, 14, 13, 51, 11, 63, 30, 60, 7, 63, 30, 15, 7, 10, 7
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Comments

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
Square array is read by descending antidiagonals, as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Rows at positions 2^k are 1, 2, 3, ..., (A000027). Row 2n is equal to row n.
Numbers on each row give a subset of positions of zeros at the corresponding row of A284270. - Antti Karttunen, May 08 2019

Examples

			Fifteen initial terms of rows 1 - 19 are listed below:
   1:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   2:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   3:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
   4:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   5:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
   6:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
   7:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
   8:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   9: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  10:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
  11:  3,  6, 12,  15,  24,  27,  30,  31,  48,  51,  54,  60,  62,  63,  96, ...
  12:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
  13:  5, 10, 15,  20,  21,  30,  31,  40,  42,  45,  47,  60,  61,  62,  63, ...
  14:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
  15: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  16:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
  17: 31, 62, 63, 124, 126, 127, 248, 252, 254, 255, 496, 504, 508, 510, 511, ...
  18: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  19:  7, 14, 28,  31,  56,  62,  63, 112, 119, 124, 126, 127, 224, 238, 248, ...
		

Crossrefs

Transpose: A114388. First column: A115873.
Cf. also arrays A277320, A277810, A277820, A284270.
A few odd-positioned rows: row 1: A000027, Row 3: A048717, Row 5: A115770 (? Checked for all values less than 2^20), Row 7: A115770, Row 9: A115801, Row 11: A115803, Row 13: A115772, Row 15: A115801 (? Checked for all values less than 2^20), Row 17: A115809, Row 19: A115874, Row 49: A114384, Row 57: A114386.

Programs

  • Mathematica
    X[a_, b_] := Module[{A, B, C, x},
         A = Reverse@IntegerDigits[a, 2];
         B = Reverse@IntegerDigits[b, 2];
         C = Expand[
            Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
            Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
         PolynomialMod[C, 2] /. x -> 2];
    T[n_, k_] := Module[{x = BitXor[n-1, 2n-1], k0 = k},
         For[i = 1, True, i++, If[n*i == X[x, i],
         If[k0 == 1, Return[i], k0--]]]];
    Table[T[n-k+1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2022 *)
  • PARI
    up_to = 120;
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A115872sq(n, k) = { my(x = A065621(n)); for(i=1,oo,if((n*i)==A048720(x,i),if(1==k,return(i),k--))); };
    A115872list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A115872sq(col,(a-(col-1))))); (v); };
    v115872 = A115872list(up_to);
    A115872(n) = v115872[n]; \\ (Slow) - Antti Karttunen, May 08 2019

Extensions

Example section added and the data section extended up to n=105 by Antti Karttunen, May 08 2019

A178891 a(n) = n OR 4n, where OR is bitwise OR.

Original entry on oeis.org

0, 5, 10, 15, 20, 21, 30, 31, 40, 45, 42, 47, 60, 61, 62, 63, 80, 85, 90, 95, 84, 85, 94, 95, 120, 125, 122, 127, 124, 125, 126, 127, 160, 165, 170, 175, 180, 181, 190, 191, 168, 173, 170, 175, 188, 189, 190, 191, 240, 245, 250, 255, 244, 245, 254, 255, 248, 253
Offset: 0

Views

Author

Dmitry Kamenetsky, Jun 21 2010

Keywords

Comments

Perhaps this is a rearrangement of A115772?

Crossrefs

Programs

  • Maple
    read("transforms") ; for n from 0 to 120 do printf("%d,", ORnos(n,4*n) ) ; end do: # R. J. Mathar, Jun 26 2010
  • Mathematica
    f[n_] := BitOr[n, 4n]; Array[f, 58, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, Jun 26 2010

A115774 Integers i such that 15*i = A048720bi(23,i).

Original entry on oeis.org

0, 5, 10, 20, 21, 40, 42, 80, 84, 85, 160, 168, 170, 320, 336, 340, 341, 640, 645, 672, 680, 682, 1280, 1285, 1290, 1344, 1360, 1364, 1365, 2560, 2565, 2570, 2580, 2581, 2688, 2693, 2720, 2728, 2730, 5120, 5125, 5130, 5140, 5141, 5160, 5162, 5376
Offset: 0

Views

Author

Antti Karttunen, Jan 30 2006

Keywords

Comments

Here * stands for ordinary multiplication and A048720 is the carryless (GF(2)[X]) multiplication.

Crossrefs

Cf. A048717, A115767, A115770. Subset of A115772 ? A115776 gives the terms of A115772 which do not occur here. Differs from A062052 for the first time at n=18, where A115774(18)=645 while A062052(18)=672. A115775 shows this sequence in binary.

A115770 Integers i such that 7*i = A048720bi(11, i), where A048720bi implements the dyadic function given in A048720 (see A001317).

Original entry on oeis.org

0, 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120, 124, 126, 127, 224, 240, 248, 252, 254, 255, 448, 455, 480, 496, 504, 508, 510, 511, 896, 903, 910, 911, 960, 967, 992, 1008, 1016, 1020, 1022, 1023, 1792, 1799, 1806, 1807, 1820, 1822, 1823, 1920
Offset: 0

Views

Author

Antti Karttunen, Jan 30 2006

Keywords

Comments

Here * stands for ordinary multiplication and A048720 is the carryless (GF(2)[X]) multiplication.

Crossrefs

Row 7 of A115872 (conjecture: also row 5).
A115771 shows this sequence in binary.

A115776 Integers i such that 13*i = A048720bi(21,i), but 15*i <> A048720bi(23,i).

Original entry on oeis.org

15, 30, 31, 45, 47, 60, 61, 62, 63, 90, 94, 95, 120, 122, 124, 125, 126, 127, 165, 173, 175, 180, 181, 188, 189, 190, 191, 240, 244, 245, 248, 250, 252, 253, 254, 255, 330, 346, 350, 351, 360, 362, 376, 378, 380, 381, 382, 383, 480, 488, 490, 496, 500
Offset: 1

Views

Author

Antti Karttunen, Jan 30 2006

Keywords

Comments

Here * stands for ordinary multiplication and A048720 is the carryless (GF(2)[X]) multiplication.

Crossrefs

Cf. Setwise difference of A115772 and A115774. A115781 shows this sequence in binary.
Showing 1-6 of 6 results.