cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115905 Numbers k such that k + phi(k) is a triangular number.

Original entry on oeis.org

2, 4, 9, 11, 20, 23, 25, 27, 49, 53, 92, 93, 105, 121, 127, 147, 150, 163, 169, 220, 228, 231, 233, 281, 286, 289, 294, 332, 361, 431, 474, 529, 541, 543, 548, 613, 660, 675, 710, 726, 743, 825, 827, 841, 888, 891, 961, 977, 993, 1014, 1028, 1265, 1310, 1369
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			121 + phi(121) = 231 = T(21).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500],OddQ[Sqrt[8(#+EulerPhi[#])+1]]&] (* Harvey P. Dale, May 11 2015 *)
  • PARI
    isok(n) = ispolygonal(n + eulerphi(n), 3); \\ Michel Marcus, Jan 25 2014

A115907 Numbers k such that sigma(k) plus the k-th prime is a triangular number.

Original entry on oeis.org

1, 2, 9, 13, 21, 80, 112, 129, 147, 225, 308, 349, 1063, 1282, 1300, 1635, 1880, 2686, 2956, 3517, 3759, 3907, 4058, 5025, 5196, 6742, 7606, 7708, 9244, 10154, 10596, 11259, 11719, 12687, 13167, 13599, 14081, 14624, 15937, 16437, 16766, 18289
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			sigma(1880) + prime(1880) = 20503 = T(202).
		

Crossrefs

Programs

  • Maple
    filter:= n -> issqr(1+8*(numtheory:-sigma(n)+ithprime(n))):
    select(filter, [$1..10^5]); # Robert Israel, Nov 07 2018
  • Mathematica
    Select[Range[25000],IntegerQ[(Sqrt[8(DivisorSigma[1,#]+Prime[#])+ 1]-1)/2]&] (* Harvey P. Dale, Jun 07 2011 *)
  • PARI
    upto(n) = my(t = 0, res = List(), u = prime(n)); forprime(p = 2, u, t++; c = p + sigma(t); if(ispolygonal(c, 3), listput(res, t))); res \\ David A. Corneth, Nov 08 2018
Showing 1-2 of 2 results.