A115922 Numbers k such that k and 2*k, taken together are pandigital.
13485, 13548, 13845, 14538, 14685, 14835, 14853, 14865, 15486, 16485, 18546, 18645, 20679, 20769, 20793, 23079, 26709, 26907, 27069, 27093, 27309, 29067, 29073, 29307, 30729, 30792, 30927, 31485, 32079, 32709, 32907, 34851, 35148, 35481, 38145, 38451
Offset: 1
Examples
13485 and 26970=13485*2 together contain all the 10 digits once.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..48 (full sequence)
Programs
-
Maple
for n from 12345 to 49382 do d:=[op(convert(n,base,10)), op(convert(2*n,base,10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k,d)<>1)then pandig:=false: break: fi: od: if(pandig)then print(n): fi: od: # Nathaniel Johnston, May 31 2011
-
Mathematica
onehalfQ[n_]:=FromDigits[Take[n,5]]/FromDigits[Take[n,-5]]==1/2; FromDigits[ Take[#,5]]&/@Select[Permutations[Range[0,9]],onehalfQ] (* This program generates the full 60-term sequence, with leading zeros permitted, of which this sequence is a subset -- see Comments *) (* Harvey P. Dale, Feb 09 2014 *)
-
PARI
{for(n=10234,49876,#Set(digits(n))==5||next; #Set(digits(n*2))==5 && #Set(concat(digits(n),digits(n*2)))==10 && print1(n","))} \\ M. F. Hasler, Feb 08 2014
Comments