A115951 Expansion of 1/sqrt(1-4*x*y-4*x^2*y).
1, 0, 2, 0, 2, 6, 0, 0, 12, 20, 0, 0, 6, 60, 70, 0, 0, 0, 60, 280, 252, 0, 0, 0, 20, 420, 1260, 924, 0, 0, 0, 0, 280, 2520, 5544, 3432, 0, 0, 0, 0, 70, 2520, 13860, 24024, 12870, 0, 0, 0, 0, 0, 1260, 18480, 72072, 102960, 48620, 0, 0, 0, 0, 0, 252, 13860, 120120, 360360, 437580, 184756
Offset: 0
Examples
Triangle begins 1, 0, 2, 0, 2, 6, 0, 0, 12, 20, 0, 0, 6, 60, 70, 0, 0, 0, 60, 280, 252, 0, 0, 0, 20, 420, 1260, 924
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
/* As triangle */ [[Binomial(2*k,k)*Binomial(k,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015
-
Mathematica
Table[Binomial[2k, k]Binomial[k, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* Michael De Vlieger, Sep 02 2015 *)
-
PARI
{T(n,k) = binomial(2*k,k)*binomial(k,n-k)}; \\ G. C. Greubel, May 06 2019
-
Sage
[[binomial(2*k,k)*binomial(k,n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 06 2019
Formula
Number triangle T(n,k) = C(2k,k)*C(k,n-k).
From Peter Bala, Sep 02 2015: (Start)
Binomial transform is A063007; equivalently, P * M = A063007, where P denotes Pascal's triangle A007318 and M denotes the present array.
P * M * P^-1 is a signed version of A063007. (End)
Comments