A115974 Number of Feynman diagrams (vanishing and non-vanishing) of order 2n for the proper self-energy function of quantum electrodynamics (QED).
1, 2, 6, 42, 414, 5058, 72486, 1182762, 21573054, 434358018, 9565348806, 228740050602, 5904853053534, 163728751178178, 4855046674314726, 153367360732387242, 5143219420761900414, 182530741698302811138, 6835913695777897799046, 269455018264860747728682, 11152465473005099074500894, 483617145128737549802831298
Offset: 0
Keywords
Examples
There are A000698(3)=10 self-energy diagrams of order 4, (n=2). Four of them are chained diagrams of order 2, (n=1) (of two kinds) which are simply connected, which leaves 10-4=6=a(2) proper diagrams.
References
- A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D 18 (1978), 1939-1949.
- R. J. Mathar, Table of Third and Fourth Order Feynman Diagrams of the Interacting Fermion Green's Function, Int. J. Quantum. Chem. 107 (10) (2007) 1975-1984.
- Adrian Ocneanu, On the inner structure of a permutation: bicolored partitions and Eulerians, trees and primitives; arXiv preprint arXiv:1304.1263 [math.CO], 2013.
- Wikipedia, Feynman diagram
Programs
-
Maple
A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end: A115974 := proc(n::integer) local resul,m ; resul := A000698(n+1) ; for m from 1 to n-1 do resul := resul-A115974(m)*A000698(n+1-m) ; od: RETURN(resul) ; end: for n from 1 to 20 do printf("%a,",A115974(n)) ; od ; # R. J. Mathar, Apr 24 2006
-
Mathematica
(* b = A000698 *) b[n_] := b[n] = (2n-1)!! - Sum[b[n-k]*(2k-1)!!, {k, n-1}]; a[0] = 1; a[n_] := a[n] = b[n+1] - Sum[a[m]*b[n+1-m], {m, n-1}]; Array[a, 22, 0] (* Jean-François Alcover, Jul 10 2017 *)
Formula
1-Sum_{n>=1} a(n)*x^n = 1/(1+Sum_{n>=1} A000698(n+1)*x^n) (G.f.)
G.f. 2 - Q(0) where Q(k) = 1 - (k+2)*x/Q(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 20 2012
G.f. 2 - x - x/(Q(0)-1) where Q(k) = 1 + (4*k+1)*x/(1 - (4*k+3)*x/((4*k+3)*x + 1/Q(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 12 2012
G.f.: 2 + x/(G(0)-1) where G(k) = 1 - x*(k+1)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: 2 - G(0) where G(k) = 1 + (2*k+1)*x - x*(2*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
G.f.: 2 - x - Q(0), where Q(k) = 1 - x*(2*k+3)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
Call Sf the G.f. for the sequence 1, 2, 10, 74, ..., i.e., A000698 with first term (equal to 1) dropped. Call Sigmaf the G.f. for the sequence 0, 2, 6, 42, ..., i.e., this sequence A115974 with a first term of order 0 (equal to 0) added. Then Sf = 1/(1-Sigmaf). - Robert Coquereaux, Sep 14 2014
a(n) ~ 2^(n + 3/2) * n^(n+1) / exp(n). - Vaclav Kotesovec, Jan 02 2019
Extensions
More terms from R. J. Mathar, Apr 24 2006, Nov 07 2006
Name and definition clarified by Robert Coquereaux, Sep 14 2014
a(0)=1 prepended by Alois P. Heinz, Jun 22 2015
Comments