cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244673 Numbers k that divide 2^k + 4.

Original entry on oeis.org

1, 2, 3, 4, 20, 260, 740, 2132, 2180, 5252, 43364, 49268, 49737, 80660, 130052, 293620, 542852, 661412, 717027, 865460, 1564180, 2185220, 2192132, 2816372, 3784916, 4377620, 4427540, 5722004, 6307652, 6919460, 8765252, 9084452, 9498260, 9723611, 11346260, 12208820, 12220132
Offset: 1

Views

Author

Derek Orr, Jul 14 2014

Keywords

Examples

			2^2 + 4 = 8 is divisible by 2. Thus 2 is a term of this sequence.
2^3 + 4 = 12 is divisible by 3. Thus 3 is a term of this sequence.
2^4 + 4 = 20 is divisible by 4. Thus 4 is a term of this sequence.
		

Crossrefs

The odd terms form A115976.

Programs

  • Maple
    A244673:=n->`if`(type((2^n+4)/n, integer), n, NULL): seq(A244673(n), n=1..10^5); # Wesley Ivan Hurt, Jul 15 2014
    Alternative:
    select(n -> 4 + 2&^n mod n = 0, [$1..10^5]); # Robert Israel, Jul 15 2014
  • Mathematica
    Select[Range[1000], Mod[2^# + 4, #] == 0 &] (* Alonso del Arte, Jul 14 2014 *)
    Join[{1,2,3},Select[Range[1223*10^4],PowerMod[2,#,#]==#-4&]] (* Harvey P. Dale, Jan 16 2023 *)
  • PARI
    for(n=1, 10^8, if(Mod(2,n)^n+4==0, print1(n, ", "))) \\ Jens Kruse Andersen, Jul 15 2014

A357125 Positive integers n such that 2^(n-3) == -1 (mod n).

Original entry on oeis.org

1, 5, 4553, 46777, 82505, 4290773, 4492205, 4976429, 21537833, 21549349, 51127261, 56786089, 60296573, 80837773, 87761789, 94424465, 138644873, 168865001, 221395541, 255881453, 297460453, 305198249, 360306365, 562654205, 635374253, 673867253, 808333573, 1164757553, 1210317349
Offset: 1

Views

Author

Max Alekseyev, Sep 13 2022

Keywords

Comments

Also, odd integers n dividing 2^n + 8.
Some large terms: 5603900696716667005, 446661376165868432471569407934747098747181600670953926245, 1533278864164902082788937853692280620552397221686019535813.

Crossrefs

The odd terms of A245319.

Programs

  • Mathematica
    Select[Range[2155*10^4],PowerMod[2,#-3,#]==#-1&]//Quiet (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Feb 08 2025 *)

A381122 Numbers k such that k^(k+1) == k (mod k+2).

Original entry on oeis.org

0, 1, 4, 8, 12, 20, 24, 28, 32, 36, 44, 56, 60, 72, 80, 84, 92, 104, 116, 120, 132, 140, 144, 156, 164, 168, 176, 180, 192, 200, 204, 212, 216, 224, 252, 260, 272, 276, 296, 300, 312, 324, 332, 344, 356, 360, 380, 384, 392, 396, 420, 444, 452, 456, 464, 476, 480, 500, 512, 524, 536, 540, 552, 560
Offset: 1

Views

Author

Robert Israel, Feb 14 2025

Keywords

Comments

Numbers k such that (-2)^(k+1) == k (mod k+2).
Odd terms are k-2 for k >= 3 in A115976.
Even terms are divisible by 4.

Examples

			a(5) = 12 is a term because 12^13 == 12 (mod 14).
		

Crossrefs

Programs

  • Maple
    select(k -> (-2) &^(k+1) mod (k+2) = k, [$1..1000]);
  • Mathematica
    Select[Range[0,560],PowerMod[#,#+1,#+2]==#&] (* James C. McMahon, Feb 15 2025 *)
Showing 1-3 of 3 results.