cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115995 Sum of the sizes of the Durfee squares of all partitions of n.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 16, 23, 36, 52, 76, 106, 152, 207, 286, 386, 522, 691, 920, 1202, 1576, 2038, 2636, 3373, 4320, 5478, 6944, 8738, 10984, 13717, 17116, 21232, 26308, 32441, 39944, 48977, 59970, 73147, 89090, 108151, 131090, 158417, 191166, 230049, 276444
Offset: 0

Views

Author

Emeric Deutsch, Feb 11 2006

Keywords

Comments

Also sum of positive cranks of all partitions of n, n>1; see A064391. - Vladeta Jovovic, Oct 20 2006
This sequence, its author and the author of the above comment were mentioned in the Andrews-Chan-Kim paper, where it is called C_1 (see the remark on page 6). - Omar E. Pol, Apr 06 2012

Examples

			a(4) = 6 because the partitions [4], [3,1], [2,2], [2,1,1] and [1,1,1,1] of 4 have Durfee squares of sizes 1,1,2,1 and 1, respectively.
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Programs

  • Maple
    g:= add(k*z^(k^2)/mul((1-z^j)^2,j=1..k),k=1..10): gser:=series(g,z=0,56): seq(coeff(gser,z,n), n=0..52);
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(add(b(k, d)*b(n-d^2-k, d), k=0..n-d^2)*d, d=1..isqrt(n)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Apr 09 2012
    # Third Maple program, based on Theorem 1 of Andrews-Chan-Kim:
    M:=101;
    qinf:=mul(1-q^i,i=1..M);
    qinf:=series(qinf,q,M);
    C1:=add((-1)^(n+1)*q^(n*(n+1)/2)/(1-q^n),n=1..M);
    C1:=series(C1/qinf,q,M);
    seriestolist(%); # N. J. A. Sloane, Sep 04 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]] ; a[n_] := Sum[ Sum[b[k, d]*b[n - d^2 - k, d], {k, 0, n - d^2}]*d, {d, 1, Sqrt[n]}]; Table [a[n], {n, 0, 70}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N); concat([0], Vec( sum(n=0,N, n*x^(n^2) / prod(k=1,n, 1-x^k)^2))) \\ Joerg Arndt, Mar 26 2014
    
  • Sage
    [sum(p.frobenius_rank() for p in Partitions(n)) for n in range(45)] # Peter Luschny, Sep 15 2014

Formula

G.f.: Sum_{k>=1} (k*z^(k^2) / Product_{j=1..k} (1 - z^j)^2 ).
a(n) = Sum_{k=1..floor(sqrt(n))} k*A115994(n,k).
Convolution of A067742 and A000041. - Vladeta Jovovic, Oct 20 2006
a(n) = A195012(n) + A209616(n), n >= 1. - Omar E. Pol, Apr 06 2012
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Jan 02 2019

Extensions

Edited and verified by Franklin T. Adams-Watters, Mar 11 2006