A115995 Sum of the sizes of the Durfee squares of all partitions of n.
0, 1, 2, 3, 6, 9, 16, 23, 36, 52, 76, 106, 152, 207, 286, 386, 522, 691, 920, 1202, 1576, 2038, 2636, 3373, 4320, 5478, 6944, 8738, 10984, 13717, 17116, 21232, 26308, 32441, 39944, 48977, 59970, 73147, 89090, 108151, 131090, 158417, 191166, 230049, 276444
Offset: 0
Keywords
Examples
a(4) = 6 because the partitions [4], [3,1], [2,2], [2,1,1] and [1,1,1,1] of 4 have Durfee squares of sizes 1,1,2,1 and 1, respectively.
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
- G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3000
- George E. Andrews, Partitions and Durfee Dissection
- George E. Andrews, Song Heng Chan, and Byungchan Kim, The odd moments of ranks and cranks
- George E. Andrews, Frank G. Garvan, and Jie Liang, Self-conjugate vector partitions and the parity of the spt-function.
- Atul Dixit, Bibekananda Maji, Partition implications of a new three parameter q-series identity, arXiv:1806.04424 [math.CO], 2018.
- Eric Weisstein's World of Mathematics, Durfee Square.
Programs
-
Maple
g:= add(k*z^(k^2)/mul((1-z^j)^2,j=1..k),k=1..10): gser:=series(g,z=0,56): seq(coeff(gser,z,n), n=0..52); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> add(add(b(k, d)*b(n-d^2-k, d), k=0..n-d^2)*d, d=1..isqrt(n)): seq(a(n), n=0..70); # Alois P. Heinz, Apr 09 2012 # Third Maple program, based on Theorem 1 of Andrews-Chan-Kim: M:=101; qinf:=mul(1-q^i,i=1..M); qinf:=series(qinf,q,M); C1:=add((-1)^(n+1)*q^(n*(n+1)/2)/(1-q^n),n=1..M); C1:=series(C1/qinf,q,M); seriestolist(%); # N. J. A. Sloane, Sep 04 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]] ; a[n_] := Sum[ Sum[b[k, d]*b[n - d^2 - k, d], {k, 0, n - d^2}]*d, {d, 1, Sqrt[n]}]; Table [a[n], {n, 0, 70}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
-
PARI
N=66; x='x+O('x^N); concat([0], Vec( sum(n=0,N, n*x^(n^2) / prod(k=1,n, 1-x^k)^2))) \\ Joerg Arndt, Mar 26 2014
-
Sage
[sum(p.frobenius_rank() for p in Partitions(n)) for n in range(45)] # Peter Luschny, Sep 15 2014
Formula
G.f.: Sum_{k>=1} (k*z^(k^2) / Product_{j=1..k} (1 - z^j)^2 ).
a(n) = Sum_{k=1..floor(sqrt(n))} k*A115994(n,k).
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Jan 02 2019
Extensions
Edited and verified by Franklin T. Adams-Watters, Mar 11 2006
Comments