A116071 Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).
1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 41, 40, 18, 4, 1, 196, 205, 100, 30, 5, 1, 1057, 1176, 615, 200, 45, 6, 1, 6322, 7399, 4116, 1435, 350, 63, 7, 1, 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1, 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1
Offset: 0
Examples
E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2! + (10 + 9*y + 3*y^2 + y^3)*x^3/3! + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4! + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +... where E(x,y) = exp(x*y) * exp(x*exp(x)). O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2 + (10 + 9*y + 3*y^2 + y^3)*x^3 + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4 + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +... where A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +... Triangle begins: 1; 1, 1; 3, 2, 1; 10, 9, 3, 1; 41, 40, 18, 4, 1; 196, 205, 100, 30, 5, 1; 1057, 1176, 615, 200, 45, 6, 1; 6322, 7399, 4116, 1435, 350, 63, 7, 1; 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1; 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1; ...
Links
Crossrefs
Programs
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
PARI
/* By definition C^C: */ {T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
/* From e.g.f.: */ {T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
/* From o.g.f. (Paul D. Hanna, Aug 03 2014): */ {T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
/* From row polynomials (Paul D. Hanna, Aug 03 2014): */ {T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
/* From formula for T(n,k) (Paul D. Hanna, Aug 03 2014): */ {T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Formula
E.g.f.: exp( x*exp(x) + x*y ).
From Peter Bala, Sep 13 2012: (Start)
Exponential Riordan array [exp(x*exp(x)),x] belonging to the Appell group. Thus the e.g.f. for the k-th column of the triangle is x^k/k!*exp(x*exp(x)).
The inverse array, denote it by X, is a signed version of A215652. The infinite tower of matrix powers X^(X^(X^(...))) equals the inverse of Pascal's triangle. (End)
O.g.f.: Sum_{n>=0} x^n / (1 - x*(n+y))^(n+1). - Paul D. Hanna, Aug 03 2014
G.f. for row n: Sum_{k=0..n} binomial(n,k) * (k + y)^(n-k) for n>=0. - Paul D. Hanna, Aug 03 2014
T(n,k) = Sum_{j=0..n-k} C(n,j) * C(n-j,k) * j^(n-k-j) = A000248(n-k)*C(n,k). - Paul D. Hanna, Aug 03 2014
Infinitesimal generator is A216973. - Peter Bala, Feb 13 2017
Comments